
Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Distance Oracle

4 Group Steiner Tree

5 Conclusion

6 Appendix

1 / 136

Metric Embeddings into Trees

Arnold Filtser
Bar-Ilan University

May 06, 2024

2 / 136

Metric space

A metric space is an ordered pair (X , dX), where X is a set and dX : X × X → R≥0 is a
function such that:

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

3 / 136

Metric space

A metric space is an ordered pair (X , dX), where X is a set and dX : X × X → R≥0 is a
function such that:

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Examples:

Weighted graph G = (V ,E ,w) with shortest path distance.

4 / 136

Metric space

A metric space is an ordered pair (X , dX), where X is a set and dX : X × X → R≥0 is a
function such that:

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

u

c

dG(u, c) = 3

5 / 136

Metric space

A metric space is an ordered pair (X , dX), where X is a set and dX : X × X → R≥0 is a
function such that:

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

6 / 136

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

DEFINITION
EFINITION
PFINITION
PEINITION
PERNITION
PERMI�TION
PERMISTION
PERMISSION

7 / 136

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

Manhattan distance ℓ1 in Rd : dℓ1(x⃗ , y⃗) = ∥x⃗ − y⃗∥1 =
∑d

i=1
|xi − yi |.

8 / 136

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

Manhattan distance ℓ1 in Rd : dℓ1(x⃗ , y⃗) = ∥x⃗ − y⃗∥1 =
∑d

i=1
|xi − yi |.

∥∥∥∥∥∥∥∥∥∥

5
8
−3
4
1

−

2
10
1
1
3

∥∥∥∥∥∥∥∥∥∥
1

= |5− 1|︸ ︷︷ ︸
4

+ |8− 10|︸ ︷︷ ︸
2

+ |(−3)− 1|︸ ︷︷ ︸
4

+ |4− 1|︸ ︷︷ ︸
3

+ |1− 3|︸ ︷︷ ︸
2

= 17

9 / 136

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

Manhattan distance ℓ1 in Rd : dℓ1(x⃗ , y⃗) = ∥x⃗ − y⃗∥1 =
∑d

i=1
|xi − yi |.

Euclidean space ℓ2 in Rd : dℓ2(x⃗ , y⃗) = ∥x⃗ − y⃗∥2 =
√∑d

i=1
(xi − yi)2.

∥∥∥∥∥∥∥∥∥∥

5
8
−3
4
1

−

1
10
1
1
3

∥∥∥∥∥∥∥∥∥∥
2

=
√

|5− 1|2︸ ︷︷ ︸
16

+ |8− 10|2︸ ︷︷ ︸
4

+ |(−3)− 1|2︸ ︷︷ ︸
16

+ |4− 1|2︸ ︷︷ ︸
9

+ |1− 3|2︸ ︷︷ ︸
4

= 7

10 / 136

Metric space

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Many problems are de�ned w.r.t. metric spaces. Examples:

Metric TSP.

k-center.

Steiner tree.

11 / 136

Metric space

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Many problems are de�ned w.r.t. metric spaces. Examples:

Metric TSP

k-center.

Steiner tree.

12 / 136

De�nition (Travelling salesman problem (TSP))

Given a metric space (X , dX) �nd a permutation x0, x1, . . . , xn−1 of the points in X
minimizing

∑n−1

i=0
dX (xi , xi+1) (i.e. a Hamilton cycle of minimum weight).

13 / 136

De�nition (Travelling salesman problem (TSP))

Given a metric space (X , dX) �nd a permutation x0, x1, . . . , xn−1 of the points in X
minimizing

∑n−1

i=0
dX (xi , xi+1) (i.e. a Hamilton cycle of minimum weight).

14 / 136

Metric space

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Many problems are de�ned w.r.t. metric spaces. Examples:

Metric TSP

k-center.

Steiner tree.

Often these problems are NP-hard.

15 / 136

Metric space

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Many problems are de�ned w.r.t. metric spaces. Examples:

Metric TSP

k-center.

Steiner tree.

Often these problems are NP-hard.

NP-hard: a large class of equivalent problems (i.e. if you solved one-you solved all) for
which we don't know of any e�cient algorithms. It is generally believed that there are
no e�cient algorithms for these problems.

16 / 136

Theorem (Karp's list of 21 problems [Karp72])

The following problems are NP-Complete:

1 SAT

2 0�1 integer
programming

3 Clique

4 Set packing

5 Vertex cover

6 Set covering

7 Feedback node set

8 Feedback arc set

9 Directed Hamilton
circuit

10 Undirected Hamilton
circuit

11 3-SAT

12 Chromatic number

13 Clique cover

14 Exact cover

15 Hitting set

16 Steiner tree

17 3-dimensional matching

18 Knapsack

19 Job sequencing

20 Partition

21 Max cut

17 / 136

Theorem (Karp's list of 21 problems [Karp72])

The following problems are NP-Complete:

1 SAT

2 0�1 integer
programming

3 Clique

4 Set packing

5 Vertex cover

6 Set covering

7 Feedback node set

8 Feedback arc set

9 Directed Hamilton
circuit

10 Undirected Hamilton
circuit

11 3-SAT

12 Chromatic number

13 Clique cover

14 Exact cover

15 Hitting set

16 Steiner tree

17 3-dimensional matching

18 Knapsack

19 Job sequencing

20 Partition

21 Max cut

How should we cope with NP-hard problems?

18 / 136

19 / 136

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

x

y

z

20 / 136

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

x

y

z

Preserve (approxierly) properties of the original space:

Distances

Cuts, Flows

Commute time

E�ective resistance

Clustering statistics.

etc.
21 / 136

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .
22 / 136

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

It is highly desirable that the target space Y will have simple structure.

So that we could run e�cient algorithms on it...

23 / 136

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

It is highly desirable that the target space Y will have simple structure.
So that we could run e�cient algorithms on it...

24 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

1

1 1

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

25 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

26 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 1)

(−
√
3
2 ,−1

2) (−
√
3
2 , 12)

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 1 1 1

b 1
√
3

√
3

c 1
√
3

√
3

d 1
√
3

√
3

27 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 1)

(−
√
3
2 ,−1

2) (−
√
3
2 , 12)

120◦

120◦

120◦

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 1 1 1

b 1
√
3

√
3

c 1
√
3

√
3

d 1
√
3

√
3

28 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 1)

(−
√
3
2 ,−1

2) (−
√
3
2 , 12)

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 1 1 1

b 1
√
3

√
3

c 1
√
3

√
3

d 1
√
3

√
3

29 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 2
√
3

3)

(−1,−
√
3
3) (−1,

√
3
3)

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 2/

√
3

2/
√
3

2/
√
3

b 2/
√
3 2 2

c 2/
√
3 2 2

d 2/
√
3 2 2

30 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 2
√
3

3)

(−1,−
√
3
3) (−1,

√
3
3)

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 2/

√
3

2/
√
3

2/
√
3

b 2/
√
3 2 2

c 2/
√
3 2 2

d 2/
√
3 2 2

31 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 2
√
3

3)

(−1,−
√
3
3) (−1,

√
3
3)

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 2/

√
3

2/
√
3

2/
√
3

b 2/
√
3 2 2

c 2/
√
3 2 2

d 2/
√
3 2 2

The distortion of the embedding is 2√
3
≈ 1.1547.

32 / 136

Metric Embeddings

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

x

y

z

Theorem ([Bourgain 85])

Every n-point metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

33 / 136

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

x

y

z

Theorem ([Bourgain 85])

Every n-point metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

Theorem ([Linial, London, Rabinovich 95])

[Bou85] is tight.

34 / 136

Theorem ([Bourgain 85])

Every n-point metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

f :

x

y

z

Applications:

Approximation algorithms (e.g. sparsest cut, min graph bandwidth)

Parallel computation (e.g. SSSP in MPC)

Computational Biology (e.g. clustering and detecting protein seq.)

etc.
35 / 136

Theorem ([Rao 99])

Every n-point planar metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(

√
log n).

f :

x

y

z

Planar metric- the shortest path metric of a planar graph.

36 / 136

Theorem ([Rao 99])

Every n-point planar metric (X , dX) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(

√
log n).

f :

x

y

z

Planar metric- the shortest path metric of a planar graph.

Theorem ([Newman, Rabinovich 03])

[Rao99] is tight.

37 / 136

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

38 / 136

Embedding

(X , dX), (Y , dY) metric spaces. f : (X , dX) → (Y , dY) is called an embedding.

f :

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

Theorem ([Green Larsen, Nelson 17])

[JL84] is tight.
39 / 136

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

f :

Applications:

Speeding up-computation
Clustering
Nearest Neighbor Search
Machine Learning
etc.

40 / 136

Graph Spanners

G = (V ,E ,w) weighted graph, a t-spanner is a subgraph H = (V ,EH)

s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t

Sparsity |H |

41 / 136

Graph Spanners

G = (V ,E ,w) weighted graph, a t-spanner is a subgraph H = (V ,EH)

s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t

Sparsity |H |

42 / 136

Graph Spanners

G = (V ,E ,w) weighted graph, a t-spanner is a subgraph H = (V ,EH)

s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t

Sparsity |H |

43 / 136

Graph Spanners

G = (V ,E ,w) weighted graph, a t-spanner is a subgraph H = (V ,EH)

s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t

Sparsity |H |

[Althofer, Das, Dobkin, Joseph, Soares 93]:

For k ≥ 1, every graph admits 2k − 1 spanner with O(n1+
1
k) edges.

44 / 136

Graph Spanners

G = (V ,E ,w) weighted graph, a t-spanner is a subgraph H = (V ,EH)

s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t

Sparsity |H |

[Althofer, Das, Dobkin, Joseph, Soares 93]:

For k ≥ 1, every graph admits 2k − 1 spanner with O(n1+
1
k) edges.

Tight. (assuming Erdös' girth conjecture).
45 / 136

Graph Spanners

[Althofer, Das, Dobkin, Joseph, Soares 93]:

For k ≥ 1, every graph admits 2k − 1 spanner with O(n1+
1
k) edges.

Tight. (assuming Erdös' girth conjecture).

Applications:

Approximation Algorithms (e.g. PTAS for TSP)

Distributed Computing

Network Routing

Computational Biology (e.g. measure genetic distance)

etc.

46 / 136

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Distance Oracle

4 Group Steiner Tree

5 Conclusion

6 Appendix

47 / 136

Embedding into Trees

Tree is very simple and desirable target space.

Many NP-hard problems are easy on trees (using dynamic programming).

48 / 136

Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

49 / 136

Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

50 / 136

Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)]

= Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

51 / 136

Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

52 / 136

Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

53 / 136

Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1

=
2(n − 1)

n
< 2 .

54 / 136

Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

55 / 136

Embedding into Trees
v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

By triangle inequality and linearity of expectation

∀vi , vj , ET∼D[dT (vi , vj)] =

j−1∑
q=i

ET∼D[dT (vq, vq+1(mod n))] ≤ 2 · dCn(vi , vj) .

56 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

57 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

58 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

59 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).
60 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).

[Alon, Karp, Peleg, West 95]: Tight!
61 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

[Alon, Karp, Peleg, West 95]: Tight!

In fact, tight already for the n × n grid graph!

62 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

A useful hammer Transforms arbitrary metric into a tree!

63 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

A useful hammer Transforms arbitrary metric into a tree!

Applications:

Approximation Algorithms.

Online Algorithms.

Distributed Computing.

etc.
64 / 136

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Distance Oracle

4 Group Steiner Tree

5 Conclusion

6 Appendix

65 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.

66 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.

Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.

67 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.
Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.

68 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.
Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.

69 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.
Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.

70 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.
Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.
71 / 136

Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

72 / 136

Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D

ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

73 / 136

Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

74 / 136

Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

75 / 136

Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

76 / 136

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

77 / 136

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]]

= Pr
T∼D

[∀i dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

=
s∏

i=1

Pr
T∼D

[dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

≤
(
1

2

)s

=

(
1

2

)4 log n

=
1

n4
.

78 / 136

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] = Pr
T∼D

[∀i dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

=
s∏

i=1

Pr
T∼D

[dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

≤
(
1

2

)s

=

(
1

2

)4 log n

=
1

n4
.

79 / 136

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] = Pr
T∼D

[∀i dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

=
s∏

i=1

Pr
T∼D

[dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

≤
(
1

2

)s

=

(
1

2

)4 log n

=
1

n4
.

80 / 136

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] = Pr
T∼D

[∀i dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

=
s∏

i=1

Pr
T∼D

[dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

≤
(
1

2

)s

=

(
1

2

)4 log n

=
1

n4
.

81 / 136

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] = Pr
T∼D

[∀i dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

=
s∏

i=1

Pr
T∼D

[dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

≤
(
1

2

)s

=

(
1

2

)4 log n

=
1

n4
.

82 / 136

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] = Pr
T∼D

[∀i dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

=
s∏

i=1

Pr
T∼D

[dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

≤
(
1

2

)s

=

(
1

2

)4 log n

=
1

n4
.

83 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
1

n4
.

By union bound, the probability that some pair x , y got too large distortion is at most(
n

2

)
· 1

n4
≤ 1

n2
.

84 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
1

n4
.

By union bound, the probability that some pair x , y got too large distortion is at most(
n

2

)
· 1

n4
≤ 1

n2
.

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

85 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

86 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

87 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.

88 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.

89 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.

Theorem ([Chechik 15])

Distance oracle with approximation O(log n), space O(n), and query time O(1).

90 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.

Theorem ([Chechik 15])

Distance oracle with approximation O(log n), space O(n), and query time O(1).

Distance oracle with approximation 2k − 1, space O(n1+
1
k), and query time O(1).

91 / 136

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Distance Oracle

4 Group Steiner Tree

5 Conclusion

6 Appendix

92 / 136

Minimum Spanning Tree (MST)

Given a weighted graph G = (V ,E ,w) �nd a spanning tree if minimum total weight.

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

11

1

1

1

1

1

1

2 2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4
4

44

4

3
4

4

4

4

4

4
4

4

3
4

3 3
3

3

3

4

93 / 136

Minimum Spanning Tree (MST)

Given a weighted graph G = (V ,E ,w) �nd a spanning tree if minimum total weight.

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

11

1

1

1

1

1

1

2 2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4
4

44

4

3
4

4

4

4

4

4
4

4

3
4

3 3
3

3

3

4

94 / 136

Minimum Spanning Tree (MST)

Given a weighted graph G = (V ,E ,w) �nd a spanning tree if minimum total weight.

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

11

1

1

1

1

1

1

2 2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4
4

44

4

3
4

4

4

4

4

4
4

4

3
4

3 3
3

3

3

4

Classic problem, admits e�cient poly-time solution.

95 / 136

Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

K

96 / 136

Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

KTopt

97 / 136

Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

KTopt Talg

NP-hard. There is a simple 2-approximation algorithm for the Steiner tree problem.
98 / 136

Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

KTopt Talg

NP-hard. There is a simple 2-approximation algorithm for the Steiner tree problem.

That is, there is a polynomial time algorithm that returns a tree Talg of weight at most
w(Talg) ≤ 2 · w(Topt).

99 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

100 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

101 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

102 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

103 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Note that Steiner tree is a special case of GST where all group sizes are 1.
Even this case is hard!

104 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Note that Steiner tree is a special case of GST where all group sizes are 1.
Even this case is hard!

The GST problem is much harder - we �rst need to choose which vertex to span from
each group, and then to decide how to connect them.

105 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Note that Steiner tree is a special case of GST where all group sizes are 1.
Even this case is hard!

The GST problem is much harder - we �rst need to choose which vertex to span from
each group, and then to decide how to connect them.

In fact, the problem is hard already on trees! (reduction to hitting set / set cover)
106 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

Note that Steiner tree is a special case of GST where all group sizes are 1.
Even this case is hard!

The GST problem is much harder - we �rst need to choose which vertex to span from
each group, and then to decide how to connect them.

In fact, the problem is hard already on trees! (reduction to hitting set / set cover)

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

107 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

That is given a tree T = (V ,E) and groups g1, g2, . . . , gk ⊆ V , there is an e�cient
algorithm that �nds a sub-tree Talg spanning a subset A of vertices such that:

For every group gi , A ∩ gi ̸= ∅.
w(Talg) ≤ O(log n · log k) · w(Topt) (where Topt is the optimal solution).

108 / 136

Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

That is given a tree T = (V ,E) and groups g1, g2, . . . , gk ⊆ V , there is an e�cient
algorithm that �nds a sub-tree Talg spanning a subset A of vertices such that:

For every group gi , A ∩ gi ̸= ∅.
w(Talg) ≤ O(log n · log k) · w(Topt) (where Topt is the optimal solution).

We will use stochastic tree embeddings to generalize [GKR00] to general graphs.

109 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n).

g ′
i = f (gi)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g4

f

110 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n).

g ′
i = f (gi)

g ′
i = f (gi)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

111 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n). g ′

i = f (gi)

S⋆ optimal solution.

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

112 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n). g ′

i = f (gi)

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
(valid solution)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

113 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n). g ′

i = f (gi)

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

E[wT (S
⋆
T
)] ≤

∑
(u,v)∈S⋆

E [dT (f (u), f (v))] = O(log n) ·
∑

(u,v)∈S⋆

dT (f (u), f (v))

= O(log n) ·
∑

(u,v)∈S⋆

wG ((u, v)) = O(log n) · wG (S
⋆)

114 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n). g ′

i = f (gi)

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
E[wT (S

⋆
T
)] = O(log n) · w(S⋆) G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

115 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n). g ′

i = f (gi)

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
E[wT (S

⋆
T
)] = O(log n) · w(S⋆) G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

116 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n). g ′

i = f (gi)

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
E[wT (S

⋆
T
)] = O(log n) · w(S⋆)

S̃T solution by [GKR00],
w(S̃T) ≤ O(log n·log k)·w(S⋆

T
).

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.
117 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
E[wT (S

⋆
T
)] = O(log n) · w(S⋆)

S̃T solution by [GKR00],
w(S̃T) ≤ O(log n·log k)·w(S⋆

T
). G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

S̃ = ∪{v ′,u′}∈S̃TP
T
v ′,u′ is a union of shortest paths in G Return S̃ .

118 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
E[wT (S

⋆
T
)] = O(log n) · w(S⋆)

S̃T solution by [GKR00],
w(S̃T) ≤ O(log n·log k)·w(S⋆

T
). G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

S̃ = ∪{v ′,u′}∈S̃TP
T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ E[wT (S̃T)]

≤ O(log n · log k) · E[w(S⋆
T
)] ≤ O(log2 n · log k) · w(S⋆)

119 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
E[wT (S

⋆
T
)] = O(log n) · w(S⋆)

S̃T solution by [GKR00],
w(S̃T) ≤ O(log n·log k)·w(S⋆

T
). G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

S̃ = ∪{v ′,u′}∈S̃TP
T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation (in expectation)
120 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .
S̃ = ∪{v ′,u′}∈S̃TP

T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation (in expectation)

How to get the approximation guarantee with high probability?

121 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .
S̃ = ∪{v ′,u′}∈S̃TP

T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation (in expectation)

How to get the approximation guarantee with high probability?

Repeat the process O(log n) times, and return the observed solution of minimum weight.

122 / 136

Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Distance Oracle

4 Group Steiner Tree

5 Conclusion

6 Appendix

123 / 136

f : (X , dX) → (Y , dY) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 1)

(−
√
3
2 ,−1

2) (−
√
3
2 , 12)

120◦

120◦

120◦

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 2/

√
3

2/
√
3

2/
√
3

b 2/
√
3 2 2

c 2/
√
3 2 2

d 2/
√
3 2 2

The distortion of the embedding is 2√
3
≈ 1.1547.

124 / 136

Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).

[Alon, Karp, Peleg, West 95]: Tight!
125 / 136

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing distance in (some) trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.

126 / 136

GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
E[wT (S

⋆
T
)] = O(log n) · w(S⋆)

S̃T solution by [GKR00],
w(S̃T) ≤ O(log n·log k)·w(S⋆

T
). G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

f

S̃ = ∪{v ′,u′}∈S̃TP
T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation (in expectation)
127 / 136

I am looking for master students!

Did you enjoyed the lecture? Do you like designing and analyzing algorithms?

128 / 136

I am looking for master students!

Did you enjoyed the lecture? Do you like designing and analyzing algorithms?

There are many open problems in the �eld waiting to be solved!

129 / 136

I am looking for master students!

Did you enjoyed the lecture? Do you like designing and analyzing algorithms?

There are many open problems in the �eld waiting to be solved!

Come and talk to me, there are fun and challenging problems (and a generous
scholarship) waiting for you.

130 / 136

I am looking for master students!

Did you enjoyed the lecture? Do you like designing and analyzing algorithms?

There are many open problems in the �eld waiting to be solved!

Come and talk to me, there are fun and challenging problems (and a generous
scholarship) waiting for you.

You can learn about my research from many di�erent videos in my home-page.

131 / 136

https://arnold.filtser.com/

Quiz.

Q0: Consider an embedding of the circle graph C7 into the line, such that the vertices
v1, v2, v3, v4, v5, v6, v7 are mapped to {1, 2, 3, 4, 5, 6, 7} respectively.
What is the distortion?

v1

v2

v3

v4v5

v6

v7

v1 v2 v3 v4 v5 v6 v7

1 2 3 4 5 6 7
f :

132 / 136

Quiz. Consider a graph family called Graphica Prime, such that every graph G in
the family embeds into distribution D over dominating trees with expected
distortion t.

Using similar techniques to what we did in class:

Q1: What distance oracle can you achieve for graphs in Graphica Prime?

Q2: What approximation factor can you obtain for graphs in Graphica Prime
for the group Steiner tree problem?

Link to quiz: Can also be found in my homepage:

arnold.�ltser.com

Or just google Arnold Filtser.

Link to slides:

133 / 136

arnold.filtser.com

Stochastic Embedding into Trees

Theorem (Stochastic embedding for Graphica Prime)

Every graph G = (V ,E ,w) in Graphica Prime embeds into distribution D over
dominating trees with expected distortion t.

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ t · dX (u, v).

134 / 136

Quiz. Consider a graph family called Graphica Prime, such that every n-graph G
in the family embeds into distribution D over dominating trees with expected
distortion t. Using similar techniques to what we did in class:

Q1: What distance oracle can you achieve for graphs in Graphica Prime?

Q2: What approximation factor can you obtain for graphs in Graphica Prime
for the group Steiner tree problem?

Link to quiz: Can also be found in my homepage:

arnold.�ltser.com

Or just google Arnold Filtser.

Link to slides:

135 / 136

arnold.filtser.com

Quiz. Consider a graph family called Graphica Prime, such that every n-graph G
in the family embeds into distribution D over dominating trees with expected
distortion t. Using similar techniques to what we did in class:

Q1: What distance oracle can you achieve for graphs in Graphica Prime?

Q2: What approximation factor can you obtain for graphs in Graphica Prime
for the group Steiner tree problem?

Link to quiz: Can also be found in my homepage:

arnold.�ltser.com

Or just google Arnold Filtser.

Link to slides:

136 / 136

arnold.filtser.com

Outline of the talk - Appendix

7 Bartal 96 and Padded decompositions

8 Metrical Task System

9 Ramsey type embeddings

10 Clan embedding

11 Group Steiner Tree (using clan embedding)

137 / 136

We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

This one is based on random partitions of metric spaces.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

∆ ∆

∆∆∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

∆

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

zγ∆ zγ∆ zγ∆

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

γ′∆ z γ′∆ z γ′∆ z

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

γ′∆ z γ′∆ z γ′∆ z

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

γ′∆ z γ′∆ z γ′∆ z

Note: Pr[B(z , 1

β
·∆) ⊆ P(z)] ≥ Ω(1).

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

zγ∆ zγ∆ zγ∆

Note: Pr[B(z , 1

β
·∆) ⊆ P(z)] ≥ Ω(1).

For small enough γ, cut probability: Pr[B(z , γ∆) ⊈ P(z)] ≤ 1− e−βγ ≈ βγ.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

Theorem ([Bartal 96])

Every n-point metric space admits an O(log n)-padded decomposition scheme.

De�nition (Padded Decomposition)

Given a metric space (X , dX) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

Theorem ([Bartal 96])

Every n-point metric space admits an O(log n)-padded decomposition scheme.

This is also tight! [Bartal 96]

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

149 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

150 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

151 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

152 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

153 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3

154 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

155 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

x4

156 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

x4

r̃4

157 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

158 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

159 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

W.h.p. ∀i , ri ≤ c
2
· log n r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

160 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

W.h.p. ∀i , ri ≤ c
2
· log n

Thus all the sampled radii ≤ ∆
2
.

r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

161 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

W.h.p. ∀i , ri ≤ c
2
· log n

Thus all the sampled radii ≤ ∆
2
.

⇒ all clusters have diameter ≤ ∆.

r̃5

x1

r̃1

x2

r̃2

x3 r̃3

x5
x4

r̃4

162 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??

γ∆ z

163 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??

i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

γ∆

r̃i

z
d(z, xi)

164 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??

i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

r̃i

γ∆ z
d(z, xi)

165 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??

i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

γ∆

r̃i

z
d(z, xi)

166 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , dX) admits an O(log n)-padded decomposition scheme.

Algorithm:

1 Arbitrarily order X : x1, x2, . . . , xn.
2 For i = 1 to n

1 Sample ri ∼ Exp(1).

2 Ci = B
(
xi , r̃i = ri · ∆

c·log n

)
\ ∪j<iCj

3 Return (C1,C2 . . . ,Cn).

Pr [B(z , γ∆) ⊆ P(z)] ≥??

i is the �rst s.t. Ci ∩ B(z , γ∆) ̸= ∅

xi

γ∆

r̃i

z
d(z, xi)

By Memorylessness,

Pr [B(z , γ∆) ⊆ Ci | B(z , γ∆) ∩ Ci ̸= ∅] ≥ Pr [r̃i ≥ 2γ∆] = e−γ·2c log n

167 / 136

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

For simplicity, we will assume that all the pairwise distances are in [1,Φ = n10].

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

The weight of the edges between the P̃i−1 representatives to their respective P̃i

representatives will be 2i .

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

The weight of the edges between the P̃i−1 representatives to their respective P̃i

representatives will be 2i .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

The weight of the edges between the P̃i−1 representatives to their respective P̃i

representatives will be 2i .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
Here x , y clustered together in P̃i i� they are clustered together in Pi ,Pi+1, . . . ,Plog Φ.

Put a �tree structure� on top of the laminar partition.

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

For every i ∈ [1, log Φ] sample an
(
O(log n), 2i

)
padded decomposition Pi .

Observation 1: For every x , y ∈ X , dX (x , y) ≤ dT (x , y)

Observation 2: If Pi(x) = Pi(y), then dT (x , y) ≤ O(2i)

dT (x , y) = O(2ix,y) where ix ,y is the maximum index such that Pi(x) ̸= Pi(y).

E[dT (x , y)] ≤
log Φ∑
i=0

O(2i) · Pr [Pi(x) ̸= Pi(y)]

≤
log Φ∑
i=0

O(2i) · dX (x , y)
2i

· O(log n)

= O(log2 n) · dX (x , y) .

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

The improvement is achieved by sampling the padded decomposition in various levels in
a correlated fashion.

Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

The improvement is achieved by sampling the padded decomposition in various levels in
a correlated fashion.

Speci�cally, the probability to cut x , y at scale ∆ is

≈ dX (x , y)

∆
· log |B(x , c · 2i)|

|B(x , 2i/c)|

for some constant c , instead of ≈ dX (x ,y)
∆

· log n. Then the sum �telescopes�.

Outline of the talk - Appendix

7 Bartal 96 and Padded decompositions

8 Metrical Task System

9 Ramsey type embeddings

10 Clan embedding

11 Group Steiner Tree (using clan embedding)

202 / 136

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

0

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.

Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

0

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).

Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

0

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

0

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

1

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

Cost alg(1)=3

1

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(1)=3

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 1

1

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(1)=3

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 1

2

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 1

Cost alg(2)=3 + 5 + 1 = 9

2

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(2)=3 + 5 + 1 = 9

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 1

2

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(2)=3 + 5 + 1 = 9

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 1

3

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 1

Cost alg(3)=9 + 4 = 13

3

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(3)=9 + 4 = 13

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1

3

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(3)=9 + 4 = 13

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1

4

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1

Cost alg(4)=13 + 9 + 0 = 22

4

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(4)=13 + 9 + 0 = 22

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1

4

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(4)=13 + 9 + 0 = 22

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1

5

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1

Cost alg(5)=22 + 5 = 27

5

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

What about Opt?

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

0

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

0

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 11

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

Cost opt(1)=6 + 1 = 7

1

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(1)=6 + 1 = 7

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 11

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(1)=6 + 1 = 7

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 12

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 1

Cost opt(2)=7 + 1 = 8

2

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(2)=7 + 1 = 8

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 12

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(2)=7 + 1 = 8

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 13

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 1

Cost opt(3)=8 + 1 = 9

3

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(3)=8 + 1 = 9

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 13

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(3)=8 + 1 = 9

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1
4

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1

Cost opt(4)=9 + 1 = 10

4

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(4)=9 + 1 = 10

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1
4

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost opt(4)=9 + 1 = 10

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1
5

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1

Cost opt(5)=10 + 1 = 11

5

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

Competitive ratio = maxinput I
Alg(I)
opt(I) .

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

Competitive ratio = maxinput I
Alg(I)
opt(I) .

Here Alg(I)
opt(I)

= 27

11
.

Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

Competitive ratio = maxinput I
Alg(I)
opt(I) .

Here Alg(I)
opt(I)

= 27

11
.

Competitive ratio against oblivious adversary is

max
input I

E[Alg(I)]

opt(I)
.

Online problem - Metrical Task System (MTS)
Approach: embed into a tree, and then make all the decisions based on the tree.

Online problem - Metrical Task System (MTS)
Approach: embed into a tree, and then make all the decisions based on the tree.

Theorem ([Fiat, Mendel 2000])

Given an n point tree∗ T , there is an online algorithm for MTS with competitive ratio
O(log n · log log n) against oblivious adversary.

∗ Actually on an HST, which is a special kind of tree. [FRT04] is into HST's.

Online problem - Metrical Task System (MTS)
Approach: embed into a tree, and then make all the decisions based on the tree.

Theorem ([Fiat, Mendel 2000])

Given an n point tree∗ T , there is an online algorithm for MTS with competitive ratio
O(log n · log log n) against oblivious adversary.

Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

Online problem - Metrical Task System (MTS)
Approach: embed into a tree, and then make all the decisions based on the tree.

Theorem ([Fiat, Mendel 2000])

Given an n point tree∗ T , there is an online algorithm for MTS with competitive ratio
O(log n · log log n) against oblivious adversary.

Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].
2. Run [FM00] on T with the same cost functions.

Make the same decisions as [FM00].

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

5

6
7

7

a
b

c

d
e

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

0

5

6
7

7

a
b

c

d
e

0

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

0

5

6
7

7

a
b

c

d
e

0

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

1

5

6
7

7

a
b

c

d
e

1

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f1(a) = 3

f1(b) = 1

f1(c) = 2

f1(d) = 4

f1(e) = 1

Cost alg(1)=3

1

5

6
7

7

a
b

c

d
e

1

Cost algT (1)=3

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(1)=3

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 1

1

5

6
7

7

a
b

c

d
e

1

Cost algT (1)=3

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(1)=3

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 1

2 5

6
7

7

a
b

c

d
e

Cost algT (1)=3

2

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f2(a) = 3

f2(b) = 1

f2(c) = 3

f2(d) = 2

f2(e) = 1

Cost alg(2)=3 + 5 + 1 = 9

2 5

6
7

7

a
b

c

d
e

2

Cost algT (2)=3 + 5 + 1 = 9

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(2)=3 + 5 + 1 = 9

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 1

2 5

6
7

7

a
b

c

d
e

2

Cost algT (2)=3 + 5 + 1 = 9

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(2)=3 + 5 + 1 = 9

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 1

3 5

6
7

7

a
b

c

d
e

Cost algT (2)=3 + 5 + 1 = 9

3

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f3(a) = 1

f3(b) = 4

f3(c) = 3

f3(d) = 2

f3(e) = 1

Cost alg(3)=9 + 4 = 13

3 5

6
7

7

a
b

c

d
e

3

Cost algT (3)=9 + 4 = 13

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(3)=9 + 4 = 13

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1

3 5

6
7

7

a
b

c

d
e

3

Cost algT (3)=9 + 4 = 13

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(3)=9 + 4 = 13

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1

4

5

6
7

7

a
b

c

d
e

Cost algT (3)=9 + 4 = 13

4

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f4(a) = 5

f4(b) = 10

f4(c) = 4

f4(d) = 0

f4(e) = 1

Cost alg(4)=13 + 9 + 0 = 22

4

5

6
7

7

a
b

c

d
e

4

Cost algT (4)=13 + 12 + 0 = 25

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(4)=13 + 9 + 0 = 22

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1

4

5

6
7

7

a
b

c

d
e

4

Cost algT (4)=13 + 12 + 0 = 25

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

Cost alg(4)=13 + 9 + 0 = 22

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1

5

5

6
7

7

a
b

c

d
e

Cost algT (4)=13 + 12 + 0 = 25

5

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

5

5

6

6

7

7

8

8
9

9

a
b

c

d
e

f5(a) = 3

f5(b) = 4

f5(c) = 4

f5(d) = 5

f5(e) = 1

Cost alg(5)=22 + 5 = 27

5

5

6
7

7

a
b

c

d
e

5

Cost algT (5)=25 + 5 = 30

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

Analysis. Let x1, x2, . . . , xk be the decisions of opt. Thus
opt =

∑k
i=1

fi(xi) +
∑k

i=1
dX (xi−1, xi).

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

Analysis. Let x1, x2, . . . , xk be the decisions of opt. Thus
opt =

∑k
i=1

fi(xi) +
∑k

i=1
dX (xi−1, xi).

We've sampled a tree T , x1, x2, . . . , xk is also a valid decisions for T . Hence
optT ≤

∑k
i=1

fi(xi) +
∑k

i=1
dT (xi−1, xi).

Online problem - Metrical Task System (MTS)
Algorithm: 1. Sample a tree T over (X , dX) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

Analysis. Let x1, x2, . . . , xk be the decisions of opt. Thus
opt =

∑k
i=1

fi(xi) +
∑k

i=1
dX (xi−1, xi).

We've sampled a tree T , x1, x2, . . . , xk is also a valid decisions for T . Hence
optT ≤

∑k
i=1

fi(xi) +
∑k

i=1
dT (xi−1, xi).

[FM00] is O(log n · log log n)-competitive on T . Hence it choose points y1, . . . , yk such
that E[algT] = E[

∑k
i=1

fi(yi) +
∑k

i=1
dT (yi−1, yi)] ≤ O(log n · log log n) · optT .

We made the same decisions, so overall:

E [alg] = E

[
k∑

i=1

fi(yi) +
k∑

i=1

dX (yi−1, yi)

]

≤ E

[
k∑

i=1

fi(yi) +
k∑

i=1

dT (yi−1, yi)

]

≤ O(log n · log log n) · E

[
k∑

i=1

fi(xi) +
k∑

i=1

dT (xi−1, xi)

]

= O(log n · log log n) ·

(
k∑

i=1

fi(xi) + O(log n) ·
k∑

i=1

dT (xi−1, xi)

)
≤ O(log2 n · log log n) ·Opt .

We made the same decisions, so overall:

E [alg] = E

[
k∑

i=1

fi(yi) +
k∑

i=1

dX (yi−1, yi)

]

≤ E

[
k∑

i=1

fi(yi) +
k∑

i=1

dT (yi−1, yi)

]

≤ O(log n · log log n) · E

[
k∑

i=1

fi(xi) +
k∑

i=1

dT (xi−1, xi)

]

= O(log n · log log n) ·

(
k∑

i=1

fi(xi) + O(log n) ·
k∑

i=1

dT (xi−1, xi)

)
≤ O(log2 n · log log n) ·Opt .

We made the same decisions, so overall:

E [alg] = E

[
k∑

i=1

fi(yi) +
k∑

i=1

dX (yi−1, yi)

]

≤ E

[
k∑

i=1

fi(yi) +
k∑

i=1

dT (yi−1, yi)

]

≤ O(log n · log log n) · E

[
k∑

i=1

fi(xi) +
k∑

i=1

dT (xi−1, xi)

]

= O(log n · log log n) ·

(
k∑

i=1

fi(xi) + O(log n) ·
k∑

i=1

dT (xi−1, xi)

)
≤ O(log2 n · log log n) ·Opt .

We made the same decisions, so overall:

E [alg] = E

[
k∑

i=1

fi(yi) +
k∑

i=1

dX (yi−1, yi)

]

≤ E

[
k∑

i=1

fi(yi) +
k∑

i=1

dT (yi−1, yi)

]

≤ O(log n · log log n) · E

[
k∑

i=1

fi(xi) +
k∑

i=1

dT (xi−1, xi)

]

= O(log n · log log n) ·

(
k∑

i=1

fi(xi) + O(log n) ·
k∑

i=1

dT (xi−1, xi)

)

≤ O(log2 n · log log n) ·Opt .

We made the same decisions, so overall:

E [alg] = E

[
k∑

i=1

fi(yi) +
k∑

i=1

dX (yi−1, yi)

]

≤ E

[
k∑

i=1

fi(yi) +
k∑

i=1

dT (yi−1, yi)

]

≤ O(log n · log log n) · E

[
k∑

i=1

fi(xi) +
k∑

i=1

dT (xi−1, xi)

]

= O(log n · log log n) ·

(
k∑

i=1

fi(xi) + O(log n) ·
k∑

i=1

dT (xi−1, xi)

)
≤ O(log2 n · log log n) ·Opt .

We made the same decisions, so overall:

E [alg] = E

[
k∑

i=1

fi(yi) +
k∑

i=1

dX (yi−1, yi)

]

≤ E

[
k∑

i=1

fi(yi) +
k∑

i=1

dT (yi−1, yi)

]

≤ O(log n · log log n) · E

[
k∑

i=1

fi(xi) +
k∑

i=1

dT (xi−1, xi)

]

= O(log n · log log n) ·

(
k∑

i=1

fi(xi) + O(log n) ·
k∑

i=1

dT (xi−1, xi)

)
≤ O(log2 n · log log n) ·Opt .

Theorem

MTS has an O(log2 n · log log n) competitive algorithm against oblivious adversary.

Outline of the talk - Appendix

7 Bartal 96 and Padded decompositions

8 Metrical Task System

9 Ramsey type embeddings

10 Clan embedding

11 Group Steiner Tree (using clan embedding)

273 / 136

Ramsey type Embeddings
Ramsey type theorem: Every big enough object, contains a structured subset.

Ramsey type Embeddings
Ramsey type theorem: Every big enough object, contains a structured subset.

v1
v0

vn−1

Ramsey type Embeddings
Ramsey type theorem: Every big enough object, contains a structured subset.

v1

vivi+1

v0
vn−1 Suppose we delete {vi , vi+1}.

Ramsey type Embeddings
Ramsey type theorem: Every big enough object, contains a structured subset.

M

v1

vi+1−ϵn

vivi+1

v0
vn−1

vi+ϵn

Suppose we delete {vi , vi+1}.

Set M = {vi+1−ϵn, vi+2−ϵn, . . . , vi+ϵn}.

Ramsey type Embeddings
Ramsey type theorem: Every big enough object, contains a structured subset.

M

v1

vi+1−ϵn

vivi+1

v0
vn−1

vi+ϵn

Suppose we delete {vi , vi+1}.

Set M = {vi+1−ϵn, vi+2−ϵn, . . . , vi+ϵn}.

For every x , y ∈ M , dT (x ,y)
dCn (x ,y)

< 1

2ϵ
.

Ramsey type Embeddings
Ramsey type theorem: Every big enough object, contains a structured subset.

M

v1

vi+1−ϵn

vivi+1

v0
vn−1

vi+ϵn

Suppose we delete {vi , vi+1}.

Set M = {vi+1−ϵn, vi+2−ϵn, . . . , vi+ϵn}.

For every x , y ∈ M , dT (x ,y)
dCn (x ,y)

< 1

2ϵ
.

Choose i u.a.r., then Pr[v ∈ M] = 1− 2ϵ.

Ramsey type Embeddings

Fix k > 1, what is the largest subset M ⊂ X ,
s.t. (M , dX) embeds into a tree with distortion k?

(X, dX)

f : X → T

Ramsey type Embeddings

Fix k > 1, what is the largest subset M ⊂ X ,
s.t. (M , dX) embeds into a tree with distortion k?

M (X, dX)

f : M → TM

∀x , y ∈ M , dX (x , y) ≤ dT (f (x), f (y)) ≤ k · dX (x , y)

Ramsey type Embeddings

Fix k > 1, what is the largest subset M ⊂ X ,
s.t. (M , dX) embeds into a tree with distortion k?

M (X, dX)

f : M → TM

∀x , y ∈ M , dX (x , y) ≤ dT (f (x), f (y)) ≤ k · dX (x , y)

Theorem ([Mendel, Naor 07], following [BFM86, BLMN05])

∀ n-point metric space and k ≥ 1, ∃ subset M of size n1−1/k

that embeds into a tree with distortion O(k).

Ramsey type Embeddings

Theorem ([Mendel, Naor 07], following [BFM86, BLMN05])

∀ n-point metric space and k ≥ 1, ∃ subset M of size n1−1/k

that embeds into a tree with distortion O(k).

M (X, dX)

f : M → TM

Asymptotically tight.

Ramsey type Embeddings

Theorem ([Mendel, Naor 07], following [BFM86, BLMN05])

∀ n-point metric space and k ≥ 1, ∃ subset M of size n1−1/k

that embeds into a tree with distortion O(k).

M (X, dX)

f : M → TM

Asymptotically tight.

[Naor, Tao 12]: distortion 2e · k .

Ramsey type Embeddings

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

T1 Ti = home(x) T
k·n1/k

(X, dX)

x

Ramsey type Embeddings

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

Applications:

Distance oracle

Compact routing scheme

Online algorithms

Approximate ranking

etc.

Ramsey type Embeddings

Theorem ([Mendel, Naor 07], following [BFM86, BLMN05])

∀ n-point metric space and k ≥ 1, ∃ subset M of size n1−1/k

that embeds into a tree with distortion O(k).

Compromises: only partial guarantees

Distance Oracle

A succinct data structure that approximately answers distance queries.

The properties of interest are size, distortion and query time.

288 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

The properties of interest are size, distortion and query time.

289 / 136

Distance Oracle

A succinct data structure that approximately answers distance queries.

The properties of interest are size, distortion and query time.
290 / 136

Distance Oracles

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

T1 Ti = home(x) T
k·n1/k

(X, dX)

x

Distance Oracles

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

Distance Oracles

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

Theorem (Tree Distance Oracle [Harel, Tarjan 84], [Bender, Farach-Colton 00])

For every tree metric*, there is an exact distance oracle of linear size and constant

query time.

Distance Oracles

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

Theorem (Tree Distance Oracle [Harel, Tarjan 84], [Bender, Farach-Colton 00])

For every tree metric*, there is an exact distance oracle of linear size and constant

query time.

Theorem (Ramsey based Deterministic Distance Oracle)

For any n-point metric space, there is a distance oracle with :
Distortion Size Query time

O(k) O(k · n1+1/k) O(1)

Outline of the talk - Appendix

7 Bartal 96 and Padded decompositions

8 Metrical Task System

9 Ramsey type embeddings

10 Clan embedding

11 Group Steiner Tree (using clan embedding)

295 / 136

Clan Embedding
Idea: duplicate vertices to meet all guarantees!

Clan Embedding
Idea: duplicate vertices to meet all guarantees!

ṽ0 ṽ1

ṽi

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

Clan Embedding
Idea: duplicate vertices to meet all guarantees!

ṽ0 ṽ1

ṽi

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

One-to-many embedding from (X , dX) to
(Y , dY): A map f : X → 2Y where:
1) ∀x , f (x) ̸= ∅.
2) ∀x , y , f (x) ∩ f (y) = ∅.

Clan Embedding
Idea: duplicate vertices to meet all guarantees!

ṽ0 ṽ1

ṽi

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

One-to-many embedding from (X , dX) to
(Y , dY): A map f : X → 2Y where:
1) ∀x , f (x) ̸= ∅.
2) ∀x , y , f (x) ∩ f (y) = ∅.

f (x) is the clan of x . Each x ′ ∈ f (x) is a copy of x .

Clan Embedding
Idea: duplicate vertices to meet all guarantees!

ṽ0 ṽ1

ṽi

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

One-to-many embedding from (X , dX) to
(Y , dY): A map f : X → 2Y where:
1) ∀x , f (x) ̸= ∅.
2) ∀x , y , f (x) ∩ f (y) = ∅.

f (x) is the clan of x . Each x ′ ∈ f (x) is a copy of x .

Dominating: dX (x , y) ≤ minx ′∈f (x),y ′∈f (y) dY (x
′, y ′)

Clan Embedding
Idea: duplicate vertices to meet all guarantees!

ṽ0 ṽ1

ṽi

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

One-to-many embedding from (X , dX) to
(Y , dY): A map f : X → 2Y where:
1) ∀x , f (x) ̸= ∅.
2) ∀x , y , f (x) ∩ f (y) = ∅.

f (x) is the clan of x . Each x ′ ∈ f (x) is a copy of x .

Dominating: dX (x , y) ≤ minx ′∈f (x),y ′∈f (y) dY (x
′, y ′)

Each clan f (x) has a chief: χ(x) ∈ f (x)

Clan Embedding
Idea: duplicate vertices to meet all guarantees!

ṽ0 ṽ1

ṽi

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

One-to-many embedding from (X , dX) to
(Y , dY): A map f : X → 2Y where:
1) ∀x , f (x) ̸= ∅.
2) ∀x , y , f (x) ∩ f (y) = ∅.

f (x) is the clan of x . Each x ′ ∈ f (x) is a copy of x .

Dominating: dX (x , y) ≤ minx ′∈f (x),y ′∈f (y) dY (x
′, y ′)

Each clan f (x) has a chief: χ(x) ∈ f (x)

f : Cn → 2P2n , f (vi) ⊆ {ṽi , v ′
i }, χ(vi) = ṽi

Clan Embedding
ṽ0 ṽ1

ṽi

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

One-to-many embedding from (X , dX) to
(Y , dY): A map f : X → 2Y where:
1) ∀x , f (x) ̸= ∅.
2) ∀x , y , f (x) ∩ f (y) = ∅.

f (x) is the clan of x . Each x ′ ∈ f (x) is a copy of x .

Dominating: dX (x , y) ≤ minx ′∈f (x),y ′∈f (y) dY (x
′, y ′)

Each clan f (x) has a chief: χ(x) ∈ f (x)

f : Cn → 2P2n , f (vi) ⊆ {ṽi , v ′
i }, χ(vi) = ṽi

Clan embedding is a pair (f , χ), where f is dominating one-to-many embedding.

(f , χ) has distortion t, if ∀x , y ∈ X , miny ′∈f (y) dY (χ(x), y
′) ≤ t · dX (x , y)

Clan Embedding

Clan embedding is a pair (f , χ), where f is dominating one-to-many embedding.

(f , χ) has distortion t, if ∀x , y ∈ X , miny ′∈f (y) dY (χ(x), y
′) ≤ t · dX (x , y)

ṽ0 ṽ1

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

ṽi+1+εn

ṽi

f : Cn → 2P2n , f (vi) ⊆ {ṽi , v ′
i }, χ(vi) = ṽi

min
y ′∈f (vi+1+ϵn)

dP2n(χ(vi), y
′) ≤ (1− ϵ)n

<
1

ϵ
· dCn(vi , vi+ϵn+1)

Clan Embedding

Clan embedding is a pair (f , χ), where f is dominating one-to-many embedding.

(f , χ) has distortion t, if ∀x , y ∈ X , miny ′∈f (y) dY (χ(x), y
′) ≤ t · dX (x , y)

ṽ0 ṽ1

v′iṽi+1
ṽi+2

v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn

v′i+1−εn

ṽn−1

ṽi+1+εn

ṽi

f : Cn → 2P2n , f (vi) ⊆ {ṽi , v ′
i }, χ(vi) = ṽi

min
y ′∈f (vi+1+ϵn)

dP2n(χ(vi), y
′) ≤ (1− ϵ)n

<
1

ϵ
· dCn(vi , vi+ϵn+1)

Choose i u.a.r., then E[|f (vi)|] = 1+ 2ϵ.

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T1 = (X,ET1, wT1)

1 2
3 4

5
6

7 8

9

10

11 12
1314

15
16

17
18 19

20

3

6
1

7

18

1610

16

118

4

Ts = (X,ETs, wTs)

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T1 = (X,ET1, wT1)

1 2
3 4

5
6

7 8

9

10

11 12
1314

15
16

17
18 19

20

3

6
1

7

18

1610

16

118

4

Ts = (X,ETs, wTs)

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T1 = (X,ET1, wT1)

1 2
3 4

5
6

7 8

9

10

11 12
1314

15
16

17
18 19

20

3

6
1

7

18

1610

16

118

4

Ts = (X,ETs, wTs)

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T1 = (X,ET1, wT1)

1 2
3 4

5
6

7 8

9

10

11 12
1314

15
16

17
18 19

20

3

6
1

7

18

1610

16

118

4

Ts = (X,ETs, wTs)

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

(both) Tight!

Clan Embedding

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Compromises: Not a real classic embedding

Path Distortion
Originally appeared in [Bartal, Mendel 04] in the context of multi-embeddings.

De�nition
One-to-many embedding f : X → 2Y has path-distortion t if for every sequence
(x0, x1, . . . , xm) in X there is a sequence y0, . . . , ym where yi ∈ f (xi), and∑m−1

i=0
dY (yi , yi+1) ≤ t ·

∑m−1

i=1
dX (xi , xi+1).

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

Path Distortion
Originally appeared in [Bartal, Mendel 04] in the context of multi-embeddings.

De�nition
One-to-many embedding f : X → 2Y has path-distortion t if for every sequence
(x0, x1, . . . , xm) in X there is a sequence y0, . . . , ym where yi ∈ f (xi), and∑m−1

i=0
dY (yi , yi+1) ≤ t ·

∑m−1

i=1
dX (xi , xi+1).

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

Path Distortion
Originally appeared in [Bartal, Mendel 04] in the context of multi-embeddings.

De�nition
One-to-many embedding f : X → 2Y has path-distortion t if for every sequence
(x0, x1, . . . , xm) in X there is a sequence y0, . . . , ym where yi ∈ f (xi), and∑m−1

i=0
dY (yi , yi+1) ≤ t ·

∑m−1

i=1
dX (xi , xi+1).

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

De�nition
One-to-many embedding f : X → 2Y has path-distortion t if for every sequence
(x0, x1, . . . , xm) in X there is a sequence y0, . . . , ym where yi ∈ f (xi), and∑m−1

i=0
dY (yi , yi+1) ≤ t ·

∑m−1

i=1
dX (xi , xi+1).

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

Theorem (Clan embedding into trees, [Filtser, Le 21])

Our clan embeddings with distortion O(k) have path distortion O(k · log n).

Theorem (Clan embedding into trees, [Filtser, Le 21])

Our clan embeddings with distortion O(k) have path distortion O(k · log n).

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Theorem (Clan embedding into trees, [Filtser, Le 21])

Our clan embeddings with distortion O(k) have path distortion O(k · log n).

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

That is there is a one-to-many embedding with a total of O(n1+
1
k) copies

and path distortion O(k · log n).

Theorem (Clan embedding into trees, [Filtser, Le 21])

Our clan embeddings with distortion O(k) have path distortion O(k · log n).

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

That is there is a one-to-many embedding with a total of O(n1+
1
k) copies

and path distortion O(k · log n).

Or a total of O(n1+
1
2) copies and path distortion O(log n).

Outline of the talk - Appendix

7 Bartal 96 and Padded decompositions

8 Metrical Task System

9 Ramsey type embeddings

10 Clan embedding

11 Group Steiner Tree (using clan embedding)

320 / 136

Steiner Tree
Given set of terminals K , �nd minimum weight tree T spanning K

K

Steiner Tree
Given set of terminals K , �nd minimum weight tree T spanning K

K

Steiner Tree
Given set of terminals K , �nd minimum weight tree T spanning K

K

In class we saw a 2-approximation algorithm for the Steiner tree problem.

Group Steiner Tree
Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Group Steiner Tree
Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Group Steiner Tree
Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Group Steiner Tree
Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

Clan embedding f with
path distortion O(log n).

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g4

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

Clan embedding f with
path distortion O(log n).

g ′
i = f (gi)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

Clan embedding f with
path distortion O(log n).

g ′
i = f (gi)

S⋆ optimal solution.

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

Clan embedding f with
path distortion O(log n).

g ′
i = f (gi)

S⋆ optimal solution.

Double each edge: 2S⋆

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

Clan embedding f with
path distortion O(log n).

g ′
i = f (gi)

S⋆ optimal solution.

Double each edge: 2S⋆

Guaranteed path: S⋆
T

(valid solution),
w(S⋆

T
) ≤ O(log n) ·w(S⋆) G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

Clan embedding f with
path distortion O(log n).

g ′
i = f (gi)

S⋆ optimal solution.

Double each edge: 2S⋆

Guaranteed path: S⋆
T
,

w(S⋆
T
) ≤ O(log n) ·w(S⋆)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4
Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

S⋆ optimal solution.

Double each edge: 2S⋆

Guaranteed path: S⋆
T
,

w(S⋆
T
) ≤ O(log n) ·w(S⋆)

S̃T solution, w(S̃T) ≤
O(log n · log k) · w(S⋆

T
) ≤

O(log2 n · log k) · w(S⋆)
G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4
Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

S⋆ optimal solution.

Double each edge: 2S⋆

Guaranteed path: S⋆
T
,

w(S⋆
T
) ≤ O(log n) ·w(S⋆)

S̃T solution, w(S̃T) ≤
O(log n · log k) · w(S⋆

T
) ≤

O(log2 n · log k) · w(S⋆)

Return: S̃ = f −1(S̃T)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4
S̃ = ∪{v ′,u′}∈S̃TP

T
v ′,u′ is a union of shortest paths in G

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

S⋆ optimal solution.

Double each edge: 2S⋆

Guaranteed path: S⋆
T
,

w(S⋆
T
) ≤ O(log n) ·w(S⋆)

S̃T solution, w(S̃T) ≤
O(log n · log k) · w(S⋆

T
) ≤

O(log2 n · log k) · w(S⋆)

Return: S̃ = f −1(S̃T)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4
S̃ = ∪{v ′,u′}∈S̃TP

T
v ′,u′ is a union of shortest paths in G

w(S̃) ≤ w(S̃T) ≤ O(log2 n · log k) · w(S⋆).

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi .

S⋆ optimal solution.

Double each edge: 2S⋆

Guaranteed path: S⋆
T
,

w(S⋆
T
) ≤ O(log n) ·w(S⋆)

S̃T solution, w(S̃T) ≤
O(log n · log k) · w(S⋆

T
) ≤

O(log2 n · log k) · w(S⋆)

Return: S̃ = f −1(S̃T)

G = (V,E,w)

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

3 4
5

6

7 8
9

10

11 12
1314

15 16 17
18 19

1 2

15

18

19

17 19

13

19

20 20

T = (X,ET , wT)

g2 g3g1 g′2 g′3g′1g4 g′4

w(S̃) ≤ w(S̃T) ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation.

Clan Embeddings construction

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Replace cardinality with weights mini-max theorem

Lemma
(X , dX) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k)

338 / 136

Clan Embeddings construction

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Replace cardinality with weights mini-max theorem

Lemma
(X , dX) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k)

Lemma
(X , dX) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k)

339 / 136

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Replace cardinality with weights

mini-max theorem

Lemma
(X , dX) n point metric, and weights µ : X → R≥1

there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)|·µ(x) ≤ O(µ(X)1+

1
k)

Lemma
(X , dX) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k)

340 / 136

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Replace cardinality with weights mini-max theorem

Lemma
(X , dX) n point metric, and weights µ : X → R≥1

there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)|·µ(x) ≤ O(µ(X)1+

1
k)

Lemma
(X , dX) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k)

341 / 136

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k)

Replace cardinality with weights mini-max theorem

Lemma
(X , dX) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k)

342 / 136

De�nition (Ultrametric)

Ultrametric (X , d) is a metric space satisfying the strong triangle inequality:

∀x , y , z ∈ X , d(x , z) ≤ max {d(x , y), d(y , z)} .

De�nition (Ultrametric)

Ultrametric (X , d) is a metric space satisfying the strong triangle inequality:

∀x , y , z ∈ X , d(x , z) ≤ max {d(x , y), d(y , z)} .

De�nition (Hierarchical well-separated tree (HST))

(X , dX) is a HST if X is mapped (by ϕ) to leaves of a rooted tree T where:

The nodes of T associated with monotone labels lv .

dX (x , y) = Γlca(φ(x),φ(y)).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22

la

lb lc

ld le lf lg lh

li lj lk ll lm ln lo lp lq lr

0 0

De�nition (Hierarchical well-separated tree (HST))

(X , dX) is a HST if X is mapped (by ϕ) to leaves of a rooted tree T where:

The nodes of T associated with monotone labels lv .

dX (x , y) = Γlca(φ(x),φ(y)).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22

la

lb lc

ld le lf lg lh

li lj lk ll lm ln lo lp lq lr

0 0

De�nition (Hierarchical well-separated tree (HST))

(X , dX) is a HST if X is mapped (by ϕ) to leaves of a rooted tree T where:

The nodes of T associated with monotone labels lv .

dX (x , y) = Γlca(φ(x),φ(y)).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22

la

lb lc

ld le lf lg lh

li lj lk ll lm ln lo lp lq lr

0 0

li
2

li
2

li
2

lj
2

lj
2

lk
2

lk
2

ll
2

ll
2

ll
2

lm
2

lm
2

ln
2 ln

2

ln
2

lo
2

lp
2

lp
2

lq
2

lq
2

lr
2 lr

2

ld−li
2

ld−lj
2

le−lk
2

le−ll
2

lf−lm
2

lf−ln
2 lg−lo

2
lg−lq
2

lg−lp
2

lh−lr
2

lc−lh
2lc−lg

2

lc−lf
2

lb−ld
2

lb−le
2

la−lb
2

la−lc
2

Construction

X rU

ℓ(rU) = diam(X) = D

347 / 136

Construction

X rU

ℓ(rU) = diam(X) = D

r + D
k

r

v
rP rQ

P = BX(v, r +
D
k) Q = X \BX(v, r)

348 / 136

Construction

X rU

ℓ(rU) = diam(X) = D

r + D
k

r

v
rP rQ

P = BX(v, r +
D
k) Q = X \BX(v, r)

a

h

g

d

c

b
e

a b e′ ha′ c d e g

349 / 136

Construction

X

r + D
k

r

v
a

h

g

d

c

b
e

rU

rP rQ

a2 b1 e3 h1g2 c1 d1 e1 g1 a4a3 h2 a1 e2

350 / 136

Construction

X

r + D
k

r

v
a

h

g

d

c

b
e

rU

rP rQ

a2 b1 e3 h1g2 c1 d1 e1 g1 a4a3 h2 a1 e2

Recursive Chiefs

351 / 136

Construction

X

r + D
k

r

v
a

h

g

d

c

b
e

Chiefs

r + D
2k

rU

rP rQ

a2 b1 e3 h1g2 c1 d1 e1 g1 a4a3 h2 a1 e2

Recursive Chiefs

352 / 136

Construction - distortion bound

X

r + D
k

r

v
a

h

g

d

c

b
e

Chiefs

r + D
2k

rU

rP rQ

a2 b1 e3 h1g2 c1 d1 e1 g1 a4a3 h2 a1 e2

Recursive Chiefs

min
c ′∈f (c)

dU(c
′, χ(a)) = D ≤ 2k · dX (c , a) .

353 / 136

Construction - cardinality bound

D = diam(X)X

354 / 136

Construction - cardinality bound

D = diam(X)X D
8

D
16

v

355 / 136

Construction - cardinality bound

D = diam(X)X D
8

D
16

D
16 + i · D

16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v

356 / 136

Construction - cardinality bound

D = diam(X)X D
8

D
16

D
16 + i · D

16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v

There is some i s.t. |Ai+1|
|Ai |

≤
(

|Ak |
|A0|

) 1
k
.

357 / 136

Construction - cardinality bound

D = diam(X)X D
8

D
16

D
16 + i · D

16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v

There is some i s.t. |Ai+1|
|Ai |

≤
(

|Ak |
|A0|

) 1
k
. Otherwise

|Ak | > |Ak−1| ·
(
|Ak |
|A0|

) 1
k

> |Ak−2| ·
(
|Ak |
|A0|

) 2
k

> · · · > |A0| ·
(
|Ak |
|A0|

) k
k

= |Ak |

358 / 136

Construction - cardinality bound

D = diam(X)X D
8

D
16

D
16 + i · D

16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v

There is some i s.t. |Ai+1|
|Ai |

≤
(

|Ak |
|A0|

) 1
k
.

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

359 / 136

X

v

D
16 + i · D

16·k

Q = Ai

P = Ai+1

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

360 / 136

X

v

D
16 + i · D

16·k

Q = Ai

P = Ai+1

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k .

361 / 136

X

v

D
16 + i · D

16·k

Q = Ai

P = Ai+1

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k . Recurse on P and Q.

362 / 136

X

v

D
16 + i · D

16·k

Q = Ai

P = Ai+1

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k . Recurse on P and Q.

We argue by induction: |f (X)| ≤ |X | · µ∗(X)
1
k ≤ |X |1+ 1

k .

Here |f (X)| =
∑

x∈X |f (x)|.
363 / 136

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k . Recurse on P and Q.

We argue by induction: |f (X)| ≤ |X | · µ∗(X)
1
k ≤ |X |1+ 1

k .

|f (X)| = |f (P)|+ |f (Q)|

≤ |P | · µ∗(P)
1
k +

∣∣Q∣∣ · µ∗(Q)
1
k

≤ |Q| · µ∗(X)
1
k +

∣∣Q∣∣ · µ∗(X)
1
k

= |X | · µ∗(X)
1
k .

364 / 136

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k . Recurse on P and Q.

We argue by induction: |f (X)| ≤ |X | · µ∗(X)
1
k ≤ |X |1+ 1

k .

|f (X)| = |f (P)|+ |f (Q)|
≤ |P | · µ∗(P)

1
k +

∣∣Q∣∣ · µ∗(Q)
1
k

≤ |Q| · µ∗(X)
1
k +

∣∣Q∣∣ · µ∗(X)
1
k

= |X | · µ∗(X)
1
k .

365 / 136

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k . Recurse on P and Q.

We argue by induction: |f (X)| ≤ |X | · µ∗(X)
1
k ≤ |X |1+ 1

k .

|f (X)| = |f (P)|+ |f (Q)|
≤ |P | · µ∗(P)

1
k +

∣∣Q∣∣ · µ∗(Q)
1
k

≤ |Q| · µ∗(X)
1
k +

∣∣Q∣∣ · µ∗(X)
1
k

= |X | · µ∗(X)
1
k .

366 / 136

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k . Recurse on P and Q.

We argue by induction: |f (X)| ≤ |X | · µ∗(X)
1
k ≤ |X |1+ 1

k .

|f (X)| = |f (P)|+ |f (Q)|
≤ |P | · µ∗(P)

1
k +

∣∣Q∣∣ · µ∗(Q)
1
k

≤ |Q| · µ∗(X)
1
k +

∣∣Q∣∣ · µ∗(X)
1
k

= |X | · µ∗(X)
1
k .

367 / 136

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X)
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X)

1
k . Recurse on P and Q.

We argue by induction: |f (X)| ≤ |X | · µ∗(X)
1
k ≤ |X |1+ 1

k .

|f (X)| = |f (P)|+ |f (Q)|
≤ |P | · µ∗(P)

1
k +

∣∣Q∣∣ · µ∗(Q)
1
k

≤ |Q| · µ∗(X)
1
k +

∣∣Q∣∣ · µ∗(X)
1
k

= |X | · µ∗(X)
1
k .

368 / 136

	Introduction
	Stochastic embedding into trees
	Distance Oracle
	Group Steiner Tree
	Conclusion
	Appendix
	Appendix
	Bartal 96 and Padded decompositions
	Metrical Task System
	Ramsey type embeddings
	Clan embedding
	Group Steiner Tree (using clan embedding)

