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Metric space

A metric space is an ordered pair (X , dX ), where X is a set and dX : X × X → R≥0 is a
function such that:

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).
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A metric space is an ordered pair (X , dX ), where X is a set and dX : X × X → R≥0 is a
function such that:

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Examples:

Weighted graph G = (V ,E ,w) with shortest path distance.
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A metric space is an ordered pair (X , dX ), where X is a set and dX : X × X → R≥0 is a
function such that:

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

u

c

dG(u, c) = 3
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1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

DEFINITION
EFINITION
PFINITION
PEINITION
PERNITION
PERMI�TION
PERMISTION
PERMISSION
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1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

Manhattan distance ℓ1 in Rd : dℓ1(x⃗ , y⃗) = ∥x⃗ − y⃗∥1 =
∑d

i=1
|xi − yi |.
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3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

Manhattan distance ℓ1 in Rd : dℓ1(x⃗ , y⃗) = ∥x⃗ − y⃗∥1 =
∑d

i=1
|xi − yi |.

∥∥∥∥∥∥∥∥∥∥


5
8
−3
4
1

−


2
10
1
1
3


∥∥∥∥∥∥∥∥∥∥
1

= |5− 1|︸ ︷︷ ︸
4

+ |8− 10|︸ ︷︷ ︸
2

+ |(−3)− 1|︸ ︷︷ ︸
4

+ |4− 1|︸ ︷︷ ︸
3

+ |1− 3|︸ ︷︷ ︸
2

= 17
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1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Weighted graph G = (V ,E ,w) with shortest path distance.

Edit distance: given two strings A,B how many edit operations
(insert, delete, substitute) are required to transform A to B?

Manhattan distance ℓ1 in Rd : dℓ1(x⃗ , y⃗) = ∥x⃗ − y⃗∥1 =
∑d

i=1
|xi − yi |.

Euclidean space ℓ2 in Rd : dℓ2(x⃗ , y⃗) = ∥x⃗ − y⃗∥2 =
√∑d

i=1
(xi − yi)2.

∥∥∥∥∥∥∥∥∥∥


5
8
−3
4
1

−


1
10
1
1
3


∥∥∥∥∥∥∥∥∥∥
2

=
√

|5− 1|2︸ ︷︷ ︸
16

+ |8− 10|2︸ ︷︷ ︸
4

+ |(−3)− 1|2︸ ︷︷ ︸
16

+ |4− 1|2︸ ︷︷ ︸
9

+ |1− 3|2︸ ︷︷ ︸
4

= 7
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Metric space

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .

2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).

3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Many problems are de�ned w.r.t. metric spaces. Examples:

Metric TSP.

k-center.

Steiner tree.
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De�nition (Travelling salesman problem (TSP))

Given a metric space (X , dX ) �nd a permutation x0, x1, . . . , xn−1 of the points in X
minimizing

∑n−1

i=0
dX (xi , xi+1) (i.e. a Hamilton cycle of minimum weight).
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Metric space

1 Identity: ∀x , y ∈ X , dX (x , y) = 0 ⇐⇒ x = y .
2 Symmetry: ∀x , y ∈ X , dX (x , y) = dX (y , x).
3 Triangle-inequality: ∀x , y , z ∈ X , dX (x , y) ≤ dX (x , z) + dX (z , y).

Many problems are de�ned w.r.t. metric spaces. Examples:

Metric TSP

k-center.

Steiner tree.

Often these problems are NP-hard.

NP-hard: a large class of equivalent problems (i.e. if you solved one-you solved all) for
which we don't know of any e�cient algorithms. It is generally believed that there are
no e�cient algorithms for these problems.
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Theorem (Karp's list of 21 problems [Karp72])

The following problems are NP-Complete:

1 SAT

2 0�1 integer
programming

3 Clique

4 Set packing

5 Vertex cover

6 Set covering

7 Feedback node set

8 Feedback arc set

9 Directed Hamilton
circuit

10 Undirected Hamilton
circuit

11 3-SAT

12 Chromatic number

13 Clique cover

14 Exact cover

15 Hitting set

16 Steiner tree

17 3-dimensional matching

18 Knapsack

19 Job sequencing

20 Partition

21 Max cut

17 / 136



Theorem (Karp's list of 21 problems [Karp72])

The following problems are NP-Complete:

1 SAT

2 0�1 integer
programming

3 Clique

4 Set packing

5 Vertex cover

6 Set covering

7 Feedback node set

8 Feedback arc set

9 Directed Hamilton
circuit

10 Undirected Hamilton
circuit

11 3-SAT

12 Chromatic number

13 Clique cover

14 Exact cover

15 Hitting set

16 Steiner tree

17 3-dimensional matching

18 Knapsack

19 Job sequencing

20 Partition

21 Max cut

How should we cope with NP-hard problems?
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Metric Embeddings

Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

x

y

z
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Metric Embeddings

Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

x

y

z

Preserve (approxierly) properties of the original space:

Distances

Cuts, Flows

Commute time

E�ective resistance

Clustering statistics.

etc.
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Metric Embeddings

Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .
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Metric Embeddings

Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

It is highly desirable that the target space Y will have simple structure.

So that we could run e�cient algorithms on it...
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(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

x

y

z

f has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

It is highly desirable that the target space Y will have simple structure.
So that we could run e�cient algorithms on it...
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f : (X , dX ) → (Y , dY ) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

1

1 1

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2
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f : (X , dX ) → (Y , dY ) has distortion t if:
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f :
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1 1 a

b

cd
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√
3
2 ,−1

2) (−
√
3
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a b c d
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a b c d
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√
3

√
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√
3

√
3
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√
3

√
3
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f : (X , dX ) → (Y , dY ) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .
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√
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√
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√
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The distortion of the embedding is 2√
3
≈ 1.1547.
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Metric Embeddings

Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

x

y

z

Theorem ([Bourgain 85])

Every n-point metric (X , dX ) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).
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Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

x

y

z

Theorem ([Bourgain 85])

Every n-point metric (X , dX ) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

Theorem ([Linial, London, Rabinovich 95])

[Bou85] is tight.
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Theorem ([Bourgain 85])

Every n-point metric (X , dX ) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(log n).

f :

x

y

z

Applications:

Approximation algorithms (e.g. sparsest cut, min graph bandwidth)

Parallel computation (e.g. SSSP in MPC)

Computational Biology (e.g. clustering and detecting protein seq.)

etc.
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Theorem ([Rao 99])

Every n-point planar metric (X , dX ) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(

√
log n).

f :

x

y

z

Planar metric- the shortest path metric of a planar graph.
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Theorem ([Rao 99])

Every n-point planar metric (X , dX ) is embeddable into Euclidean space (Rd , ∥ · ∥2)
with distortion O(

√
log n).

f :

x

y

z

Planar metric- the shortest path metric of a planar graph.

Theorem ([Newman, Rabinovich 03])

[Rao99] is tight.
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Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.
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Embedding

(X , dX ), (Y , dY ) metric spaces. f : (X , dX ) → (Y , dY ) is called an embedding.

f :

Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

Theorem ([Green Larsen, Nelson 17])

[JL84] is tight.
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Theorem ([Johnson, Lindenstrauss 84], Dimension Reduction)

X ⊂ (Rd , ∥ · ∥2) set of size n. Then X embeds into O(log n/ϵ2) dimensional Euclidean
space with distortion 1+ ϵ.

f :

Applications:

Speeding up-computation
Clustering
Nearest Neighbor Search
Machine Learning
etc.
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Graph Spanners

G = (V ,E ,w) weighted graph, a t-spanner is a subgraph H = (V ,EH)

s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t

Sparsity |H |
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Graph Spanners

G = (V ,E ,w) weighted graph, a t-spanner is a subgraph H = (V ,EH)

s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t

Sparsity |H |

[Althofer, Das, Dobkin, Joseph, Soares 93]:

For k ≥ 1, every graph admits 2k − 1 spanner with O(n1+
1
k ) edges.
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s.t. ∀u, v ∈ V , dH(u, v) ≤ t · dG (u, v)

Stretch t
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For k ≥ 1, every graph admits 2k − 1 spanner with O(n1+
1
k ) edges.

Tight. (assuming Erdös' girth conjecture).
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Graph Spanners

[Althofer, Das, Dobkin, Joseph, Soares 93]:

For k ≥ 1, every graph admits 2k − 1 spanner with O(n1+
1
k ) edges.

Tight. (assuming Erdös' girth conjecture).

Applications:

Approximation Algorithms (e.g. PTAS for TSP)

Distributed Computing

Network Routing

Computational Biology (e.g. measure genetic distance)

etc.
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Embedding into Trees

Tree is very simple and desirable target space.

Many NP-hard problems are easy on trees (using dynamic programming).
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Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).
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Embedding into Trees

Tree is very simple and desirable target space. v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)]

= Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .
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ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .
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Embedding into Trees
v1

vj

vivi+1

v0vn−1

vj+1Embedding Cn requires distortion Ω(n).

What if we delete a random edge ẽ?

ET∼D[dT (vi , vi+1)] = Pr [ẽ = {vi , vi+1}] · (n − 1) + Pr [ẽ ̸= {vi , vi+1}] · 1

=
1

n
· (n − 1) +

n − 1

n
· 1 =

2(n − 1)

n
< 2 .

By triangle inequality and linearity of expectation

∀vi , vj , ET∼D[dT (vi , vj)] =

j−1∑
q=i

ET∼D[dT (vq, vq+1(mod n))] ≤ 2 · dCn(vi , vj) .
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).
60 / 136



Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).

[Alon, Karp, Peleg, West 95]: Tight!
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

[Alon, Karp, Peleg, West 95]: Tight!

In fact, tight already for the n × n grid graph!
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

A useful hammer Transforms arbitrary metric into a tree!
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

A useful hammer Transforms arbitrary metric into a tree!

Applications:

Approximation Algorithms.

Online Algorithms.

Distributed Computing.

etc.
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1 Introduction

2 Stochastic embedding into trees

3 Distance Oracle

4 Group Steiner Tree

5 Conclusion
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Distance Oracle

A succinct data structure that approximately answers distance queries.

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.
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Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.

Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.
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Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.
Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.
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Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.
Space: O(n2), query time: O(1)

Best possible for exact distance oracle.
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Distance Oracle

A succinct data structure that approximately answers distance queries.

Given an n point metric space one can store all distances pairwise distances.
Space: O(n2), query time: O(1)

Best possible for exact distance oracle.

Could we do better by allowing the oracle to returned approximated distances?

The properties of interest are size, distortion and query time.
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Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).
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Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D

ET∼D[dT (x , y)] = O(log n) · dX (x , y) .
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Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).
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Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).
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Distance Oracle

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X ]
a
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Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X ]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.
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Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .

Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Markov inequality: Pr[X ≥ a] ≤ E[X ]
a

Pr
T∼D

[dT (x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
ET∼D[dT (x , y)]

2 · ET∼D[dT (x , y)]
=

1

2
.

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]]

= Pr
T∼D

[∀i dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

=
s∏

i=1

Pr
T∼D

[dTi
(x , y) ≥ 2 · ET∼D[dT (x , y)]]

≤
(
1

2

)s

=

(
1

2

)4 log n

=
1

n4
.
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Fix x , y ∈ X , and sample a tree T ∼ D. ET∼D[dT (x , y)] = O(log n) · dX (x , y) .
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Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi
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Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
1

n4
.

By union bound, the probability that some pair x , y got too large distortion is at most(
n

2

)
· 1

n4
≤ 1

n2
.
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Pr
T∼D

[DO(x , y) ≥ 2 · ET∼D[dT (x , y)]] ≤
1

n4
.

By union bound, the probability that some pair x , y got too large distortion is at most(
n

2

)
· 1

n4
≤ 1

n2
.

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi
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Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.

Theorem ([Chechik 15])

Distance oracle with approximation O(log n), space O(n), and query time O(1).
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing O(1) distance approximation in trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.

Theorem ([Chechik 15])

Distance oracle with approximation O(log n), space O(n), and query time O(1).

Distance oracle with approximation 2k − 1, space O(n1+
1
k ), and query time O(1).
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2 Stochastic embedding into trees

3 Distance Oracle
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Minimum Spanning Tree (MST)

Given a weighted graph G = (V ,E ,w) �nd a spanning tree if minimum total weight.
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Minimum Spanning Tree (MST)

Given a weighted graph G = (V ,E ,w) �nd a spanning tree if minimum total weight.
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Minimum Spanning Tree (MST)

Given a weighted graph G = (V ,E ,w) �nd a spanning tree if minimum total weight.
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Classic problem, admits e�cient poly-time solution.
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Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

K
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Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

KTopt
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Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

KTopt Talg

NP-hard. There is a simple 2-approximation algorithm for the Steiner tree problem.
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Steiner Tree

Given set of terminals K , �nd minimum weight tree T spanning K

KTopt Talg

NP-hard. There is a simple 2-approximation algorithm for the Steiner tree problem.

That is, there is a polynomial time algorithm that returns a tree Talg of weight at most
w(Talg) ≤ 2 · w(Topt).
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Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1
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Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Note that Steiner tree is a special case of GST where all group sizes are 1.
Even this case is hard!
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Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

g2 g3g1

Note that Steiner tree is a special case of GST where all group sizes are 1.
Even this case is hard!

The GST problem is much harder - we �rst need to choose which vertex to span from
each group, and then to decide how to connect them.
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Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

Note that Steiner tree is a special case of GST where all group sizes are 1.
Even this case is hard!

The GST problem is much harder - we �rst need to choose which vertex to span from
each group, and then to decide how to connect them.

In fact, the problem is hard already on trees! (reduction to hitting set / set cover)

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.
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Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

That is given a tree T = (V ,E ) and groups g1, g2, . . . , gk ⊆ V , there is an e�cient
algorithm that �nds a sub-tree Talg spanning a subset A of vertices such that:

For every group gi , A ∩ gi ̸= ∅.
w(Talg) ≤ O(log n · log k) · w(Topt) (where Topt is the optimal solution).
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Group Steiner Tree (GST)

Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least one
vertex from each gi

Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.

That is given a tree T = (V ,E ) and groups g1, g2, . . . , gk ⊆ V , there is an e�cient
algorithm that �nds a sub-tree Talg spanning a subset A of vertices such that:

For every group gi , A ∩ gi ̸= ∅.
w(Talg) ≤ O(log n · log k) · w(Topt) (where Topt is the optimal solution).

We will use stochastic tree embeddings to generalize [GKR00] to general graphs.
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GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n).

g ′
i = f (gi)

G = (V,E,w)

1 2

3 4
5
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7 8
9
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11 12
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15 16 17
18 19
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11 12
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T = (X,ET , wT )

g2 g3g1 g4

f
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GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .

Embedding f with expected
distortion O(log n). g ′

i = f (gi)

S⋆ optimal solution.

S⋆
T
: ∀(u, v) ∈ S⋆ add the path

from f (u) to f (v).
(valid solution)
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T
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15 16 17
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T = (X,ET , wT )

g2 g3g1 g′2 g′3g′1g4 g′4

f

E[wT (S
⋆
T
)] ≤

∑
(u,v)∈S⋆

E [dT (f (u), f (v))] = O(log n) ·
∑

(u,v)∈S⋆

dT (f (u), f (v))

= O(log n) ·
∑

(u,v)∈S⋆

wG ((u, v)) = O(log n) · wG (S
⋆)
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T
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Theorem ([Garg, Konjevod, Ravi 00])

O(log n · log k)-approximation algorithm for the GST problem on trees.
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GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
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S⋆ optimal solution.
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S̃ = ∪{v ′,u′}∈S̃TP
T
v ′,u′ is a union of shortest paths in G Return S̃ .
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f

S̃ = ∪{v ′,u′}∈S̃TP
T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ E[wT (S̃T )]

≤ O(log n · log k) · E[w(S⋆
T
)] ≤ O(log2 n · log k) · w(S⋆)
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S̃ = ∪{v ′,u′}∈S̃TP
T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation (in expectation)
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GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
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S̃ = ∪{v ′,u′}∈S̃TP

T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation (in expectation)

How to get the approximation guarantee with high probability?
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GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .
S̃ = ∪{v ′,u′}∈S̃TP

T
v ′,u′ is a union of shortest paths in G Return S̃ .

E[wT (S̃)] ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation (in expectation)

How to get the approximation guarantee with high probability?

Repeat the process O(log n) times, and return the observed solution of minimum weight.
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Outline of the talk

1 Introduction

2 Stochastic embedding into trees

3 Distance Oracle

4 Group Steiner Tree

5 Conclusion

6 Appendix
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f : (X , dX ) → (Y , dY ) has distortion t if:

∀x , y ∈ X , dX (x , y) ≤ dY (f (x), f (y)) ≤ t · dX (x , y) .

a

b

cd

f :
1

1 1 a

b

cd

(0, 0)

(0, 1)

(−
√
3
2 ,−1

2) (−
√
3
2 , 12)

120◦

120◦

120◦

a b c d
a 1 1 1
b 1 2 2
c 1 2 2
d 1 2 2

a b c d
a 2/

√
3

2/
√
3

2/
√
3

b 2/
√
3 2 2

c 2/
√
3 2 2

d 2/
√
3 2 2

The distortion of the embedding is 2√
3
≈ 1.1547.
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Stochastic Embedding into Trees

Theorem ([Fakcharoenphol, Rao, Talwar 04], improving [Bartal 96+98])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ O(log n) · dX (u, v).

[Alon, Karp, Peleg, West 95]: Tight!
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Distance Oracle construction
Sample s = 4 log n trees T1, . . . ,Ts . Given x , y return DO(x , y) = mini∈[1,s] dTi

(x , y).

Clearly, as the trees are dominating, DO(x , y) = mini∈[1,s] dTi
(x , y) ≥ dX (x , y).

Thus with high probability, for every x , y ∈ X

DO(x , y) < 2 · ET∼D[dT (x , y)] = O(log n) · dG (x , y) .

Space: storing O(log n) trees. Total space is O(n log n) (machine words).

Query time: computing dTi
(x , y) for i ∈ [1, s].

There is a data structure computing distance in (some) trees in O(1) time.
Overall O(log n) query time.

Overall we obtained distance approximation O(log n) with O(log n) query time and
O(n log n) space.
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GST: Given subsets g1, g2, . . . , gk ⊆ V , �nd minimum weight tree T spanning at least
one vertex from each gi .
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v ′,u′ is a union of shortest paths in G Return S̃ .
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We got an O(log2 n · log k) approximation (in expectation)
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I am looking for master students!

Did you enjoyed the lecture? Do you like designing and analyzing algorithms?
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There are many open problems in the �eld waiting to be solved!

Come and talk to me, there are fun and challenging problems (and a generous
scholarship) waiting for you.
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I am looking for master students!

Did you enjoyed the lecture? Do you like designing and analyzing algorithms?

There are many open problems in the �eld waiting to be solved!

Come and talk to me, there are fun and challenging problems (and a generous
scholarship) waiting for you.

You can learn about my research from many di�erent videos in my home-page.
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Quiz.

Q0: Consider an embedding of the circle graph C7 into the line, such that the vertices
v1, v2, v3, v4, v5, v6, v7 are mapped to {1, 2, 3, 4, 5, 6, 7} respectively.
What is the distortion?

v1

v2

v3

v4v5

v6

v7

v1 v2 v3 v4 v5 v6 v7

1 2 3 4 5 6 7
f :
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Quiz. Consider a graph family called Graphica Prime, such that every graph G in
the family embeds into distribution D over dominating trees with expected
distortion t.

Using similar techniques to what we did in class:

Q1: What distance oracle can you achieve for graphs in Graphica Prime?

Q2: What approximation factor can you obtain for graphs in Graphica Prime
for the group Steiner tree problem?

Link to quiz: Can also be found in my homepage:

arnold.�ltser.com

Or just google Arnold Filtser.

Link to slides:
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Stochastic Embedding into Trees

Theorem (Stochastic embedding for Graphica Prime)

Every graph G = (V ,E ,w) in Graphica Prime embeds into distribution D over
dominating trees with expected distortion t.

G = (V,E,w) T1 Ti Ts

v

u

v

u

v

u

For every u, v ∈ X and T ∈ supp(D), dX (u, v) ≤ dT (f (u), f (v)).

For every u, v ∈ X ET∼D[dT (f (u), f (v))] ≤ t · dX (u, v).
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Quiz. Consider a graph family called Graphica Prime, such that every n-graph G
in the family embeds into distribution D over dominating trees with expected
distortion t. Using similar techniques to what we did in class:

Q1: What distance oracle can you achieve for graphs in Graphica Prime?

Q2: What approximation factor can you obtain for graphs in Graphica Prime
for the group Steiner tree problem?

Link to quiz: Can also be found in my homepage:

arnold.�ltser.com

Or just google Arnold Filtser.

Link to slides:
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Outline of the talk - Appendix

7 Bartal 96 and Padded decompositions

8 Metrical Task System

9 Ramsey type embeddings

10 Clan embedding

11 Group Steiner Tree (using clan embedding)
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We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]



We will begin our tour of metric embeddings into trees with the classics: [Bartal 96]

This one is based on random partitions of metric spaces.



De�nition (Padded Decomposition)

Given a metric space (X , dX ) (or a weight graph G = (V ,E ,w)).
Distribution D over partitions of G is (β,∆)-padded decomposition if:

For every cluster C ∈ P ∼ D, diam(C) ≤ ∆.

For every small 0 ≤ γ, and z ∈ V , Pr[B(z , γ∆) ⊆ P(z)] ≥ e−βγ .

G admits a β-padded decomposition scheme:
∀∆ > 0, G admits (β,∆)-padded decomposition.
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This is also tight! [Bartal 96]
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By Memorylessness,

Pr [B(z , γ∆) ⊆ Ci | B(z , γ∆) ∩ Ci ̸= ∅] ≥ Pr [r̃i ≥ 2γ∆] = e−γ·2c log n
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�Force� them into a laminar partition: P̃1, P̃2, . . . , P̃log Φ.
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Theorem ([Bartal 96])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log2 n).

Theorem ([Fakcharoenphol, Rao, Talwar 04] , [Bartal 04])

Every n-point metric space (X , d) embeds into distribution D over dominating trees

with expected distortion O(log n).

The improvement is achieved by sampling the padded decomposition in various levels in
a correlated fashion.

Speci�cally, the probability to cut x , y at scale ∆ is

≈ dX (x , y)

∆
· log |B(x , c · 2i)|

|B(x , 2i/c)|

for some constant c , instead of ≈ dX (x ,y)
∆

· log n. Then the sum �telescopes�.
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Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX ). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.
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Online problem - Metrical Task System (MTS)
Input: Metric space (X , dX ). Initial con�guration x0 ∈ X .

At step i , a task arrives with cost function fi : X → R≥0.
Output: Point xi ∈ X s.t. the task performed at xi at cost dX (xi−1, xi) + fi(xi).
Goal: Minimize the competitive ratio between our algorithm to opt.

Competitive ratio = maxinput I
Alg(I )
opt(I ) .

Here Alg(I )
opt(I )

= 27

11
.

Competitive ratio against oblivious adversary is

max
input I

E[Alg(I )]

opt(I )
.
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O(log n · log log n) against oblivious adversary.

∗ Actually on an HST, which is a special kind of tree. [FRT04] is into HST's.
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2. Run [FM00] on T with the same cost functions.

Make the same decisions as [FM00].
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Algorithm: 1. Sample a tree T over (X , dX ) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

Analysis. Let x1, x2, . . . , xk be the decisions of opt. Thus
opt =

∑k
i=1

fi(xi) +
∑k

i=1
dX (xi−1, xi).
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Algorithm: 1. Sample a tree T over (X , dX ) using [FRT04].

2. Run [FM00] on T with the same cost functions.
Make the same decisions as [FM00].

Analysis. Let x1, x2, . . . , xk be the decisions of opt. Thus
opt =

∑k
i=1

fi(xi) +
∑k

i=1
dX (xi−1, xi).

We've sampled a tree T , x1, x2, . . . , xk is also a valid decisions for T . Hence
optT ≤

∑k
i=1

fi(xi) +
∑k

i=1
dT (xi−1, xi).

[FM00] is O(log n · log log n)-competitive on T . Hence it choose points y1, . . . , yk such
that E[algT ] = E[

∑k
i=1

fi(yi) +
∑k

i=1
dT (yi−1, yi)] ≤ O(log n · log log n) · optT .
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Theorem

MTS has an O(log2 n · log log n) competitive algorithm against oblivious adversary.
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Ramsey type theorem: Every big enough object, contains a structured subset.

M

v1

vi+1−ϵn

vivi+1

v0
vn−1

vi+ϵn

Suppose we delete {vi , vi+1}.

Set M = {vi+1−ϵn, vi+2−ϵn, . . . , vi+ϵn}.

For every x , y ∈ M , dT (x ,y)
dCn (x ,y)

< 1

2ϵ
.

Choose i u.a.r., then Pr[v ∈ M] = 1− 2ϵ.
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Theorem ([Mendel, Naor 07], following [BFM86, BLMN05])

∀ n-point metric space and k ≥ 1, ∃ subset M of size n1−1/k

that embeds into a tree with distortion O(k).

M (X, dX)

f : M → TM

Asymptotically tight.

[Naor, Tao 12]: distortion 2e · k .



Ramsey type Embeddings

Corollary
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Ramsey type Embeddings

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

Applications:

Distance oracle

Compact routing scheme

Online algorithms

Approximate ranking

etc.



Ramsey type Embeddings

Theorem ([Mendel, Naor 07], following [BFM86, BLMN05])

∀ n-point metric space and k ≥ 1, ∃ subset M of size n1−1/k

that embeds into a tree with distortion O(k).

Compromises: only partial guarantees
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Distance Oracles

Corollary

For every n-point metric space and k ≥ 1, there is a set T of k · n 1
k trees and a

mapping home : X → T , such that for every x , y ∈ X ,

dhome(x)(x , y) ≤ O(k) · dX (x , y)

Theorem (Tree Distance Oracle [Harel, Tarjan 84], [Bender, Farach-Colton 00] )

For every tree metric*, there is an exact distance oracle of linear size and constant

query time.

Theorem (Ramsey based Deterministic Distance Oracle)

For any n-point metric space, there is a distance oracle with :
Distortion Size Query time

O(k) O(k · n1+1/k) O(1)
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9 Ramsey type embeddings

10 Clan embedding
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ṽi+εn ṽi+1−εn

v′i+1−εn
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ṽi

v′iṽi+1
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ṽi

v′iṽi+1
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ṽi+εn ṽi+1−εn

v′i+1−εn
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ṽi+εn ṽi+1−εn
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Clan embedding is a pair (f , χ), where f is dominating one-to-many embedding.

(f , χ) has distortion t, if ∀x , y ∈ X , miny ′∈f (y) dY (χ(x), y
′) ≤ t · dX (x , y)

ṽ0 ṽ1
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v′i+1v′i+2

v′i+εn
ṽi+εn ṽi+1−εn
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ṽn−1
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ṽi

f : Cn → 2P2n , f (vi) ⊆ {ṽi , v ′
i }, χ(vi) = ṽi

min
y ′∈f (vi+1+ϵn)

dP2n(χ(vi), y
′) ≤ (1− ϵ)n

<
1

ϵ
· dCn(vi , vi+ϵn+1)

Choose i u.a.r., then E[|f (vi)|] = 1+ 2ϵ.



Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX ) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O( log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.
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(X , dX ) n point metric space, ∀ϵ ∈ (0, 1), there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O( log n
ϵ
).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ 1+ ϵ.

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX ) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
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(both) Tight!



Clan Embedding

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX ) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k )

Compromises: Not a real classic embedding
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Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX ) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k )

That is there is a one-to-many embedding with a total of O(n1+
1
k ) copies

and path distortion O(k · log n).

Or a total of O(n1+
1
2 ) copies and path distortion O(log n).
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In class we saw a 2-approximation algorithm for the Steiner tree problem.
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w(S̃) ≤ w(S̃T ) ≤ O(log2 n · log k) · w(S⋆).

We got an O(log2 n · log k) approximation.



Clan Embeddings construction

Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX ) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k )

Replace cardinality with weights mini-max theorem

Lemma
(X , dX ) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k )
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mini-max theorem

Lemma
(X , dX ) n point metric, and weights µ : X → R≥1

there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)|·µ(x) ≤ O(µ(X )1+

1
k )

Lemma
(X , dX ) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k )

340 / 136



Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX ) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:

∀ (f , χ) ∈ supp(D) has distortion O(k).

∀ x ∈ X , E(f ,χ)∼D[|f (x)|] ≤ O(n
1
k )

Replace cardinality with weights mini-max theorem

Lemma
(X , dX ) n point metric, and weights µ : X → R≥1

there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)|·µ(x) ≤ O(µ(X )1+

1
k )

Lemma
(X , dX ) n point metric, there is dominating clan embedding into a tree s.t.:

(f , χ) has distortion O(k).∑
x∈X |f (x)| ≤ O(n1+

1
k )

341 / 136



Theorem (Clan embedding into trees, [Filtser, Le 21])

(X , dX ) n point metric space, ∀k ∈ N, there is
distribution D over dominating clan embeddings into trees such that:
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De�nition (Ultrametric)

Ultrametric (X , d) is a metric space satisfying the strong triangle inequality:

∀x , y , z ∈ X , d(x , z) ≤ max {d(x , y), d(y , z)} .
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(X , dX ) is a HST if X is mapped (by ϕ) to leaves of a rooted tree T where:

The nodes of T associated with monotone labels lv .

dX (x , y) = Γlca(φ(x),φ(y)).
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Construction

X rU

ℓ(rU) = diam(X) = D
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Construction

X

r + D
k
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Chiefs

r + D
2k

rU

rP rQ
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Construction - distortion bound

X

r + D
k

r

v
a

h

g

d

c

b
e

Chiefs

r + D
2k

rU

rP rQ

a2 b1 e3 h1g2 c1 d1 e1 g1 a4a3 h2 a1 e2

Recursive Chiefs

min
c ′∈f (c)

dU(c
′, χ(a)) = D ≤ 2k · dX (c , a) .
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Construction - cardinality bound

D = diam(X)X
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16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v
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D = diam(X)X D
8

D
16

D
16 + i · D

16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v

There is some i s.t. |Ai+1|
|Ai |

≤
(

|Ak |
|A0|

) 1
k
.
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Construction - cardinality bound

D = diam(X)X D
8

D
16

D
16 + i · D

16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v

There is some i s.t. |Ai+1|
|Ai |

≤
(

|Ak |
|A0|

) 1
k
. Otherwise

|Ak | > |Ak−1| ·
(
|Ak |
|A0|

) 1
k

> |Ak−2| ·
(
|Ak |
|A0|

) 2
k

> · · · > |A0| ·
(
|Ak |
|A0|

) k
k

= |Ak |
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Construction - cardinality bound

D = diam(X)X D
8

D
16

D
16 + i · D

16·k

Ai = BX(v, D16 + i · D
16·k)

i ∈ {0, . . . , k − 1}v

There is some i s.t. |Ai+1|
|Ai |

≤
(

|Ak |
|A0|

) 1
k
.

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X )
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.
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X

v

D
16 + i · D

16·k

Q = Ai

P = Ai+1

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X )
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .
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16·k
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P = Ai+1

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X )
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X )

1
k .
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Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X )
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X )

1
k . Recurse on P and Q.
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Q = Ai

P = Ai+1

Claim

There is v ∈ X , and i , s.t. |Ai+1|
|Ai |

≤
(

µ∗(X )
µ∗(Ai+1)

)1/k

=

(
maxx∈X |BX (x ,

diam(X)
4

)|
maxx∈Ai+1

∣∣∣BAi+1
(x ,

diam(Ai+1)

4
)
∣∣∣
)1/k

.

Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X )

1
k . Recurse on P and Q.

We argue by induction: |f (X )| ≤ |X | · µ∗(X )
1
k ≤ |X |1+ 1

k .

Here |f (X )| =
∑

x∈X |f (x)|.
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Claim
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Set P = Ai+1, Q = Ai , and Q = X \ Ai .

By the claim: |P | · µ∗(P)
1
k ≤ |Q| · µ∗(X )

1
k . Recurse on P and Q.

We argue by induction: |f (X )| ≤ |X | · µ∗(X )
1
k ≤ |X |1+ 1

k .

|f (X )| = |f (P)|+ |f (Q)|

≤ |P | · µ∗(P)
1
k +

∣∣Q∣∣ · µ∗(Q)
1
k

≤ |Q| · µ∗(X )
1
k +

∣∣Q∣∣ · µ∗(X )
1
k

= |X | · µ∗(X )
1
k .
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