
One Tree to Rule Them All:
Poly-Logarithmic Universal Steiner Tree

Costas Busch∗, Da Qi Chen†, Arnold Filtser‡,
Daniel Hathcock§, D Ellis Hershkowitz¶‖ and Rajmohan Rajaraman∗∗

∗School of Computer and Cyber Sciences

Augusta University, Augusta, Georgia

Email: kbusch@augusta.edu
†Biocomplexity Institute and Initiative

University of Virginia, Charlottesville, Virginia

Email: daqichen02@gmail.com
‡Department of Computer Science

Bar-Ilan University, Ramat Gan, Israel

Email: arnold.filtser@biu.ac.il
§Department of Mathematical Sciences

Carnegie Mellon University, Pittsburgh, Pennsylvania

Email: dhathcoc@andrew.cmu.edu
¶Computer Science Department

Brown University, Providence, Rhode Island
‖Department of Mathematics

ETH Zürich, Zürich, Switzerland

Email: delhersh@gmail.com
∗∗Khoury College of Computer Sciences

Northeastern University, Boston, Massachusetts

Email: r.rajaraman@northeastern.edu

Abstract—A spanning tree T of graph G is a ρ-
approximate universal Steiner tree (UST) for root vertex
r if, for any subset of vertices S containing r, the cost
of the minimal subgraph of T connecting S is within a
ρ factor of the minimum cost tree connecting S in G.
Busch et al. (FOCS 2012) showed that every graph admits
2O(

√
logn)-approximate USTs by showing that USTs are

equivalent to strong sparse partition hierarchies (up to
poly-logs). Further, they posed poly-logarithmic USTs and
strong sparse partition hierarchies as open questions.

We settle these open questions by giving polynomial-
time algorithms for computing both O(log7 n)-approximate
USTs and poly-logarithmic strong sparse partition hi-
erarchies. We reduce the existence of these objects to
the previously studied cluster aggregation problem and a
class of well-separated point sets which we call dangling

Busch supported by National Science Foundation grant CNS-
2131538. Filtser supported by the Israel Science Foundation (grant
No. 1042/22). Hathcock supported by the National Science Founda-
tion Graduate Research Fellowship under grant No. DGE-2140739.
Hershkowitz funded by the SNSF, Swiss National Science Founda-
tion grant 200021 184622. Rajaraman supported by National Science
Foundation grant CCF-1909363.

nets. For graphs with constant doubling dimension or
constant pathwidth we obtain improved bounds by deriving
O(log n)-approximate USTs and O(1) strong sparse parti-
tion hierarchies. Our doubling dimension result is tight up
to second order terms.

I. INTRODUCTION

Consider the problem of designing a network that

allows a server to broadcast a message to a single set of

clients. If sending a message over a link incurs some cost

then designing the best broadcast network is classically

modelled as the Steiner tree problem [HR92]. Here,

we are given an edge-weighted graph G = (V,E,w),
terminals S ⊆ V and our goal is a subgraph H ⊆ G
connecting S of minimum weight w(H) :=

∑
e∈H w(e).

We let OPTS be the weight of an optimal solution.

However, Steiner trees fail to model the fact that a

server generally broadcasts different messages to differ-

ent subsets of clients over time. If building network links

is slow and labor-intensive, we cannot simply construct

60

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00012

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

01
2

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

Family Approximation Ref.

Complete Graphs

General
O(log2 n) [GHR06]

Ω(log n) [JLN+05]

Planar
O(log n) [BLT14]

Ω̃(log n) [JLN+05]

Doubling
Õ(d3) · log n [Fil20]

Ω̃(log n) [JLN+05]

Pathwidth O(pw · log n) [Fil20]

General Graphs

General
2O(

√
log n)

[BDR+12]

O(log7 n) Thm. VI.2

Planar O(log18 n) [BDR+12]

Doubling Õ(d7) · log n Full Ver. [BCF+23]

Pathwidth O(pw8 · log n) Full Ver. [BCF+23]

Fig. 1: A summary of UST work.

new links each time a new broadcast must be performed.

Rather, in such situations we must understand how to

construct a single network in which the broadcast cost

from a server is small for every subset of clients. Ideally,

we would like our network to be a tree since trees have a

simple routing structure. Our goals are similar if our aim

is to perform repeated aggregation of data of different

subsets of clients. Motivated by these settings, Jia et al.

[JLN+05] introduced the idea of universal Steiner trees

(USTs), defined below and illustrated in Figure 2.

Definition I.1 (ρ-Approximate Universal Steiner Tree).
Given an edge-weighted graph G = (V,E,w) and root
r ∈ V , a ρ-approximate universal Steiner tree is a
spanning tree T ⊆ G such that for every S ⊆ V
containing r, we have

w(T{S}) ≤ ρ · OPTS

where T{S} ⊆ T is the minimal subtree of T connect-
ing S, and OPTS is the minimum weight Steiner tree
connecting S in G.

Known UST results are given in Figure 1. Surpris-

ingly, it is known that every n-vertex graph admits a

2O(
√
logn)-approximate and poly-time-computable UST,

as proven by [BDR+12] more than a decade ago. On the

other hand, the best known lower bound is ρ ≥ Ω(logn)
[JLN+05]. In fact, even when G is the complete graph

whose distances are induced by an
√
n×√

n grid, there

is an Ω(log n/ log log n) lower bound. Improved upper

bounds are known for several special cases: fixed minor-

free (e.g. planar) graphs admit O(log18 n)-approximate

USTs [BDR+12]. Complete graphs induced by a metric

admit O(log2 n)-approximate USTs [GHR06]. If the

inducing metric has doubling dimension d, then the

complete graph admits O(d3 · log n)-approximate USTs

[Fil20]. Furthermore, better bounds are known for com-

plete graphs when the inducing metric is the shortest

path metric of a restricted graph H: if H is planar or has

pathwidth pw then the complete graph admits O(log n)-
[BLT14] and O(pw · log n)- [Fil20] approximate USTs,

respectively.

Thus, for general graphs, there is a huge gap between

the upper and lower bounds of 2O(
√
logn) and Ω(logn).

Closing this gap has been posed as an open question

[BDR+12, JLN+05, Fil20].

Our main result is a poly-time O(log7 n)-
approximate UST, settling this open question.

Furthermore, if G has constant doubling dimension or

pathwidth, we provide an O(log n)-approximate UST.

The doubling dimension result is tight up to second order

terms [JLN+05].

We obtain our results by proving the existence

of certain graph hierarchies—strong sparse partition

hierarchies— and leveraging a previously-established

connection between these hierarchies and USTs. We

prove the existence of these hierarchies, in turn, by

reducing their existence to two objects: (1) low distortion

solutions to the (previously studied) cluster aggregation

problem, and (2) a certain kind of net which we call

dangling nets that provide additive sparsity guarantees.

The existence of these nets can be inferred from an

analysis in [Fil20] of the random-shift techniques of

[MPX13]. For cluster aggregation, we improve the best

bounds in general graphs from O(log2 n) [BDR+12]

to O(log n) and prove O(1) bounds for trees, constant

doubling dimension and constant pathwidth graphs. Our

results are summarized in Table I. We spend the rest of

this section describing them in greater detail.1

A. Poly-Logarithmic USTs

As mentioned, our main result is a polynomial-

time computable O(log7 n)-approximate UST in general

graphs. Not only is this an exponential improvement for

general graphs2, it significantly improves upon the best

bounds known for planar graphs (previously O(log18 n)
[BDR+12]).

1We make use of standard graph notation and concepts throughout
this work; see Section III for definitions.

2Following the conventions in theoretical computer science, we call
f = polylog(g) an exponential improvement over g.

61

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

(a) UST T . (b) T{S} ⊆ T . (c) Optimal Steiner tree for S.

Fig. 2: 2a is a UST (blue) in unit-weight G with root r (green triangle). 2b is induced subtree T{S} (orange) of

weight 11 for S (orange diamonds). 2c is weight 6 optimal Steiner tree (green).

Problem Param. General Thm. Doubling Ref. Pathwidth Ref.
UST ρ O(log7 n) (VI.2) Õ(d7) · log n [BCF+23] O(pw8 · log n) [BCF+23]

Strong Sparse α O(log n) O(d) O(pw)

Hierarchy τ O(log n) (VI.1) Õ(d) [BCF+23] O(pw2) [BCF+23]

γ O(log2 n) Õ(d3) O(pw2)

Dangling Nets α O(log n) O(d) O(pw)

[Fil20] τ O(log n) Õ(d) O(pw2)

Cluster Agg. β O(log n) (V.1) Õ(d2) [BCF+23] O(pw) [BCF+23]

TABLE I: A summary of our results. For details on the results for bounded doubling dimension graphs and bounded

pathwidth graphs, we refer the reader to the full version of the paper [BCF+23]. Our solutions for cluster aggregation

on doubling dimension d only work for the instances of cluster aggregation we must solve to compute hierarchies

of strong sparse partitions. Õ notation hides poly(log d) factors. The results for dangling nets are proven implicitly

in [Fil20]. Our algorithms for general graphs and bounded doubling dimension graphs are randomized and succeed

with high probability (1− n−Ω(1)), while our result for pathwidth graphs and trees are deterministic.

We also give improved UST bounds for graphs with

doubling dimension d and graphs with pathwidth pw:

poly(d)·log n and poly(pw)·log n respectively. Bounded

doubling dimension graphs are a well-studied graph

class that generalizes the “bounded growth” of low-

dimensional Euclidean space to arbitrary graphs [FLL06,

AGGM06, ACGP16, KRX08, FS16, FKT19]. Bounded

pathwidth graphs are a fundamental graph class that

plays a key role in the celebrated graph minor theorem

[RS86]. As discussed above, it was previously known

that O(log n)-approximate USTs are possible if G is a

complete graph whose edge lengths are induced by either

a constant doubling dimension metric or the shortest

path metric of a constant pathwidth graph. Our results

strengthen this, showing O(log n)-approximate USTs

are possible for these two cases without the additional

assumption that G is the complete graph.

B. Strong Sparse Partitions via Cluster Aggregation and
Dangling Nets

As mentioned, we achieve our UST algorithm by way

of new results in graph hierarchies.

We build on works over the past several decades on

efficiently decomposing and extracting structure from

graphs and metrics. Notable examples of this work

are ball carvings, low-diameter decompositions (LDDs),

network decompositions, padded decompositions and

sparse neighborhood covers, all of which have nu-

merous algorithmic applications, especially in parallel

and distributed computing [AP90, LS93, KPR93, FG19,

BGK+11, Fil19a, FS10, EHRG22, ABCP96, ABN08,

CG21, Bar04, KK17, RG20, FL22]. Generally speaking,

these constructions separate a graph into clusters of

nearby vertices while respecting graph distances.

The decompositions of our focus are strong sparse

62

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

partitions, first defined by [JLN+05] (in their weak

diameter version) and studied in several later works

[BDR+12, CJK+22, Fil20].

Definition I.2 (Strong Δ-Diameter (α, τ)-Sparse Parti-

tions). Given edge-weighted graph G = (V,E,w), a
strong Δ-diameter (α, τ)-sparse partition is a partition
C of V such that:

• Low (Strong) Diameter: ∀C ∈ C, the induced
graph G[C] has diameter at most Δ;

• Ball Preservation: ∀v ∈ V , the ball BG(v,
Δ
α)

intersects at most τ clusters from C .

Sparse partitions with weak diameter and poly-

logarithmic parameters can be constructed directly from

classic sparse covers [AP90, JLN+05, Fil20] or ball

carving techniques [Bar96, CJK+22]. However, to date,

the only known techniques for poly-logarithmic sparse

partitions with strong diameter guarantees in general

graphs are the (O(log n), O(log n))-sparse partitions of

[Fil20], constructed using exponentially-shifted starting

times.3 These start times were first used by [MPX13] to

compute low diameter decompositions and spanners.

The simple graph class of trees cannot do much better

than the strong (O(log n), O(log n))-sparse partitions in

general graphs: both α and τ have to be essentially

Ω(log n). As such, bounded pathwidth and doubling

dimension graphs are of particular interest. In particular,

graphs with bounded pathwidth are exactly the graph

family that excludes a fixed tree as a minor, circumvent-

ing this barrier with constant parameter strong sparse

partitions.Conversely, trees that do not have good sparse

partitions have doubling dimension Ω(logn).

Little is known about graph decompositions in hier-

archical settings; in particular, if our goal is a series

of decompositions of increasing diameter where each

decomposition coarsens the previous. One notable such

hierarchy introduced by [BDR+12] is a hierarchy of

strong sparse partitions.4

Definition I.3 (γ-Hierarchy of Strong (α, τ)-Sparse Par-

titions). Given edge-weighted graph G = (V,E,w), a
γ-hierarchy of strong (α, τ)-sparse partitions consists
of vertex partitions {{v} : v ∈ V } = C0, C1, . . . , Ck =
{{V }} such that:

• Strong Partitions: Ci is a strong γi-diameter (α, τ)-
sparse partition for every i;

3Worse partitions with 2O(
√
logn) parameters are possible by

adapting the greedy approach of [BDR+12].
4We assume that the minimal pairwise distance in G is 1. Otherwise,

we can scale all distances accordingly.

• Coarsening: Ci+1 coarsens Ci, i.e. for each U ∈ Ci
there is a U ′ ∈ Ci+1 such that U ⊆ U ′.

If we did not enforce the above coarsening property,

we could trivially compute the above partitions with

poly-logarithmic parameters by using the strong sparse

partitions from [Fil20] independently for each level of

the hierarchy. However, the coarsening property ren-

ders computing such hierarchies highly non-trivial as it

prevents such independent construction. Indeed, while

hierarchies with poly-logarithmic parameterizations have

been stated as an open question (see, e.g. [Fil20]), the

previous best bounds known for such hierarchies are

γ = α = τ = 2O(
√
logn) [BDR+12]. Thus, there is

an exponential gap between the bounds known for “one-

level” and hierarchical strong sparse partitions.

Nonetheless, previous work has demonstrated that

these hierarchies can serve as the foundation of remark-

ably powerful algorithmic result such as USTs.

Theorem I.4 ([BDR+12]). Given edge-weighted graph
G = (V,E,w) and a γ-hierarchy of strong (α, τ)-
sparse partitions, one can compute an O(α2τ2γ log n)-
approximate UST in polynomial time.

[BDR+12] gave 2O(
√
logn)-approximate USTs by com-

bining the above theorem with their hierarchies.

Our second major contribution is a reduction of such

hierarchies to the previously-studied cluster aggregation

problem [BDR+12] and what we call dangling nets.

Informally, cluster aggregation takes a vertex partition

and a collection of portal vertices and coarsens it to a

partition with a portal in each coarsened part. The goal

is to guarantee that the portal in each vertex’s coarsened

cluster is nearly as close in its cluster as its originally-

closest portal. Crucially for our purposes, the distortion

of a solution is measured additively. See Figure 3 for an

illustration of cluster aggregation.

Definition I.5 (Cluster Aggregation). An instance of
cluster aggregation consists of an edge-weighted graph
G = (V,E,w), a partition C of V into clusters of strong
diameter Δ and a set of portals P ⊆ V . A β-distortion
solution is an assignment f : C → P such that for every
v ∈ V

dG[f−1(f(v))](v, f(v)) ≤ dG(v, P) + β ·Δ
where Cv ∈ C is the cluster containing v and we let
f(v) := f(Cv) and f−1(p) := {v : f(v) = p}.

In other words, a β-distortion cluster aggregation solu-

tion f requires that the distance from v to p = f(v) in

the cluster induced by p, is at most β · Δ larger than

63

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

(a) Cluster aggregation instance. (b) Cluster aggregation solution. (c) Solution distortion.

Fig. 3: A cluster aggregation instance with unit-weight edges. 3a gives the instance; portals P are blue squares and

the input partition parts C are blue ovals. 3b gives solution where each red oval is the pre-image of some portal. 3c

illustrates why the solution is 2-distortion with the path of a vertex to its nearest portal in green and to its nearest

portal in its coarsened cluster in red.

the distance from v to it’s closest portal in G. Observe

that any solution f on input cluster aggregation partition

C naturally corresponds to a coarser partition C′. Also,

observe that, in general, we have that β ≥ 1 by Figure 5.

Informally, a dangling net is a collection of net ver-

tices we “dangle” off of a graph so that every vertex

is close to a net vertex but no vertex has too many net

vertices nearby. Crucially, the sense of “nearby” is also

measured additively. See Figure 7b for an illustration.

Definition I.6 (Δ-Covering (α, τ)-Sparse Dangling Net).
A dangling net for graph G = (V,E,w) consists of
vertices N where N ∩ V = ∅ and a matching M with
edge weights wM from N to V . We let G+N := (V �
N,E � M,w � wM) be the resulting graph. N is Δ-
covering (α, τ)-sparse if

• Covering: dG+N (v,N) ≤ Δ for every v ∈ V ;
• Additive Sparsity: for all v ∈ V we have∣∣{t ∈ N : dG+N (v, t) ≤ dG+N (v,N) + Δ

α

}∣∣ ≤ τ .

While not explicitly stated in terms of dangling nets,

the random shift analysis of [Fil20] implicitly prove the

existence of good parameter dangling nets: e.g. α = τ =
O(log n) for general graphs; see Theorem III.1.

We state our reduction of strong sparse hierarchies to

cluster aggregation and dangling nets.

Theorem I.7. Fix edge-weighted graph G and α, β, τ ≥
0. If for every Δ > 0:

• Dangling Net: there is a dangling net N that is
Δ-covering (α, τ)-sparse and;

• Cluster Aggregation: G + N cluster aggregation
on portals N is always β-distortion solvable;

then, G has a 2β · (2α+ 1)-hierarchy of strong (8α +
4, τ)-sparse partitions. Furthermore, if each N and clus-

ter aggregation solution is poly-time computable then the
hierarchy is poly-time computable.

C. Improved Cluster Aggregation

The connection we establish between cluster aggre-

gation, strong sparse partition hierarchies and USTs—as

well as the fact that [BDR+12] posed improvements on

their O(log2 n)-distortion cluster aggregation solutions

as an open question—motivates further study of cluster

aggregation.

Our third major contribution is an improvement to

cluster aggregation distortion in a variety of graph

classes. Notably, we improve the O(log2 n)-distortion

solutions of [BDR+12] to O(log n)-distortion for gen-

eral graphs and give improved bounds for trees, bounded

pathwidth and bounded doubling dimension graphs. For

bounded doubling dimension graphs we must make as-

sumptions on the input (see the full version [BCF+23]).

We know of no bounds prior to our work for clus-

ter aggregation other than the previous O(log2 n) of

[BDR+12] for general graphs. We summarize our cluster

aggregation results in Figure 4 (κ ≤ n is the number of

clusters in the input partition).

Combining our reduction (Theorem I.7) with the

above cluster aggregation algorithms and dangling nets

(Theorem III.1 for general graphs) gives our strong

sparse partition hierarchies. Combining these hierarchies

with Theorem I.4 gives our UST solutions. See Sec-

tion VI for proof details and again, see Table I for an

overview of the resulting bounds.

As the notation we use is quite standard, we defer a

description of it and our (mostly) standard preliminaries

to Section III.

64

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

Family Distortion Ref.

General
O(log2 n) [BDR+12]

O(log κ) Theorem V.1

Trees 4 Full ver. [BCF+23]

Doubling O(d2 · log d) Full ver. [BCF+23]

Pathwidth 8(pw + 1) Full ver. [BCF+23]

Fig. 4: Our cluster aggregation results.

Δ 11

Fig. 5: Why β ≥ 1 for cluster aggregation. One vertex

in the center cluster must traverse its Δ-diameter cluster

to get to a portal in any cluster aggregation solution.

D. Additional Related Work

We review additional related work not discussed ear-

lier.

1) (Online and Oblivious) Steiner Tree: As it is an

elementary NP-hard problem [GJ79], there has been

extensive work on polynomial-time approximation algo-

rithms for Steiner tree and related problems [AKR91,

BGRS13, BGRS10, RZ05, HHZ21, Fil22, GKR00].

The subset of this work most closely related to our

own is work on online and oblivious Steiner tree. In

online Steiner tree the elements of S \ {r} arrive one at

a time and the algorithm must add a subset of edges to its

solution so that it is feasible and cost-competitive with

the optimal Steiner tree for the so-far arrived subset of

S\{r}. Notably, the greedy algorithm is a tight O(log n)-
approximation [IW91], though improved bounds are

known if elements of S \ {r} leave rather than arrive

[GK14, GGK13]. See [AA92, NPS11, Ang07, XM22]

for further work. Even harder, in oblivious Steiner tree,

for each possible vertex v ∈ V \{r}, the algorithm must

pre-commit to a path Pv from r to v. Then, a subset S
containing r is revealed and the algorithm must play as

its solution the union of its pre-commited-to paths for S,

namely
⋃

v∈S\{r} Pv . The goal of the algorithm is for its

played solution to be cost-competitive with the optimal

Steiner tree for S for every S. Notably, unlike USTs,

the union of the paths played by the algorithm need not

induce a tree. [GHR06] gave an O(log2 n)-approximate

polynomial-time algorithm for this problem and its more

general version “oblivious network design.”
Observe that any ρ-approximate UST immediately

gives a ρ-approximate oblivious Steiner tree algorithm

which, in turn, gives a ρ-approximate online Steiner tree

algorithm. Thus, in this sense UST is at least as hard as

both online and oblivious Steiner tree.
2) Tree Embeddings and (Hierarchical) Graph De-

compositions: There has been extensive work on ap-

proximating arbitrary graphs by distributions over trees

by way of so-called probabilistic tree embeddings

[Bar98, DGR06, AN12, BGS16, FRT03, ACE+20,

FL21, HHZ21, Fil22]. Notably, any graph admits a distri-

bution over trees that O(log n)-approximate distances in

expectation [FRT03] and a distribution over subtrees that

O(log n log logn)-approximate distances in expectation

[AN12].
USTs and probabilistic tree embeddings both attempt

to flatten the weight structure of a graph to a tree. How-

ever, tree embeddings only aim to provide pairwise guar-

antees in expectation, while USTs provide guarantees

for every possible subset of vertices deterministically.

While one can always sample many tree embeddings to

provide pairwise guarantees with high probability, the

corresponding subgraph will not be a single tree, unlike

a UST.
As mentioned in Section I-B, decompositions of

graphs into nearby vertices that respect distance struc-

ture have been extensively studied. See, for example,

[CJK+22] for a recent application of sparse partitions

in streaming algorithms. The graph decomposition most

similar to sparse partitions are the scattering partitions

of [Fil20]. Informally, scattering partitions provide the

same guarantees as sparse partitions but with respect to

shortest paths rather than balls.
These sorts of decompositions (and, in particular,

hierarchies of them) are intimately related to tree em-

beddings. For example, the tree embeddings of [Bar98]

can be viewed as a hierarchy of low-diameter de-

compositions. However, we note that, unlike strong

sparse partition hierarchies, these hierarchies generally

do not provide deterministic guarantees and, for exam-

ple, [Bar98]’s hierarchy only provides weak diameter

guarantees. Somewhat similarly, [ACE+20] produce a

strong diameter padded decomposition hierarchy.
3) Universal Problems: In addition to Steiner tree,

there are a number of problems whose universal versions

have been studied. For example, the universal travelling

salesman problem has been extensively studied [SS08,

GKSS10, HKL06, BCK11, JLN+05, PBI89, BG89].

There are also works on universal set cover [JLN+05,

65

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

GGL+08] and universal versions of clustering problems

[GMP23].

II. OVERVIEW OF CHALLENGES AND INTUITION

Before moving on to our formal results, we give a

brief overview of our techniques.

A. Reducing Hierarchies to Cluster Aggregation and
Dangling Nets

Similarly to previous work, we take a bottom-up ap-

proach to compute strong sparse partition hierarchies. We

begin with the singleton partition C0 = {{v} : v ∈ V }
and then compute each Ci+1 using Ci. Recall that our

goal is a strong γi+1-diameter partition Ci+1 which

coarsens Ci and which guarantees that any ball of radius

γi+1/α intersects at most τ clusters of Ci+1.

Previous Approach: A natural strategy for comput-

ing the cluster C ′
j ∈ Ci+1 containing cluster Cj ∈ Ci is

to start with Cj and expand it whenever it intersects a

“violated” ball. Namely, if this cluster is incident to a di-

ameter γi+1/α ball B intersecting more than τ clusters,

grow this cluster to contain all clusters intersecting B.

The issue with this is that we may end up with a very

long sequence of violated balls, each of which forces us

to grow C ′
j further. See Figures 6a and 6b.

The main observation of [BDR+12] was that if the

number of clusters each violated ball is incident to is

at least 2O(
√
logn), this sequence of violated balls can

have length at most 2O(
√
logn), which gives strong sparse

partition hierarchies with α = τ = γ = 2O(
√
logn).

Notably, the approach of [BDR+12] is “all or nothing”

in that if there is a violated ball incident to more than τ
clusters of Ci, then all of these clusters are forced to be

in the same cluster of Ci+1. See Figure 6c.

Our Approach: Our approach uses dangling nets to

coordinate cluster aggregation in a way that coarsens Ci
without being all or nothing. On one hand, a dangling

net respects balls but not in a way that has anything

to do with Ci or coarsening it. In particular, a dangling

net N corresponds to a natural sparse Voronoi partition

(where each vertex goes to the closest net vertex in N)

whose sparsity properties are robust to small (additive)

changes. On the other hand, cluster aggregation provides

a principled way of coarsening a partition Ci but does

not necessarily respect balls. In particular, it coarsens a

partition at the cost of small (additive) changes. We use

dangling nets as portals for cluster aggregation to get the

best of both techniques: cluster aggregation ensures that

we coarsen with small additive costs while dangling nets

ensure that these additive costs do not negatively impact

…

(a) Partition Ci.

……

(b) Sequence of violated balls.

…

(c) [BDR+12] all or nothing C′
j .

Fig. 6: The challenge of a sequence of violated balls

when constructing the cluster in Ci+1 containing Cj ∈
Ci. 6a gives Ci as blue squares with Cj upper-left. 6b

shows the “violated balls” of diameter γi+1/α. 6c shows

the solution computed by [BDR+12] assuming that τ <
5.

sparsity. See Figure 7 for an illustration of our approach

(and its later analysis).

B. Improved Cluster Aggregation

We now briefly discuss our techniques for producing

improved cluster aggregation solutions.

Our General Graphs Approach: Our approach for

achieving an O(log n)-distortion cluster aggregation is a

round-robin process of O(log n) phases. In each phase,

each unassigned cluster has a constant probability of

merging with a cluster containing a portal. We accom-

plish this as follows. Define the maximal internally
disjoint (MID) path of an unassigned cluster C as the

maximal prefix of the shortest path from some represen-

tative node in C to a portal which is disjoint from all

assigned clusters. In each phase we iterate through the

clusters with portals. For each cluster C ′
i with a portal

we repeatedly flip a fair coin until we get a tails at which

point we move on to the next cluster with a portal. Each

time we get a heads we do an “expansion iteration”,

merging C ′
i with all clusters incident to a MID path that

ends at C ′
i. Intuitively, this is a sort of geometric ball

growing where MID paths are always treated as having

weight 0. See Figure 8 for an illustration.

Every unassigned cluster is assigned in each phase

with constant probability. Therefore with high probabil-

66

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

γi+1/4α
v

(a) Ci and one γi+1/α ball.

d(v,N) + γi+1/α

(b) Dangling net N . (c) Ci+1 via cluster aggregation.

Fig. 7: An illustration of our algorithm for coarsening Ci to Ci+1. 7a gives Ci as transparent blue squares and one

ball of radius γi+1/4α centered at v. 7b illustrates our dangling net N (opaque blue squares) and the fact that there

are τ net vertices within distance d(v,N) + γi+1/α of v; in this case 5 net vertices. 7c gives the Ci+1 resulting

from cluster aggregation (in red) which guarantees that every vertex u ∈ BG(v,
γi+1

4α) is sent to a portal at distance

at most dG(v,N) + β · γi + γi+1

2α ≤ dG(v,N) + γi+1

α from v, which are exactly the 5 net vertices.

ity after O(log n) iterations, every cluster is assigned

to some portal. The additive distortion of this process

can be bounded by the maximum number of heads any

one cluster gets across all phases. The key to arguing

O(log n) distortion is to observe that, while the distortion

we incur may be as large as Θ(log n) in one phase,

the distortion any portal incurs across all phases is also

O(log n). Thus, we bound across all phases at once.

This can be contrasted with [BDR+12] who performed

O(log n) phases of merging with O(log n) distortion per

phase. See the full version of our work [BCF+23] for a

description of how we exploit the structure of the family

to argue that there are limited conflicts when merging

clusters.

III. NOTATION, CONVENTIONS AND PRELIMINARIES

We review the (mostly standard) notation we use

throughout this work.

General: We use � for disjoint union; i.e. U � V
is the same set as U ∪ V but indicates that U ∩ V = ∅.

Geom(p) is the geometric distribution where the proba-

bility for value i is (1 − p)i−1 · p, and the expectation

is 1
p . Bin(n, p) stands for a binomial distribution with n

samples, each with success probability p.

Graphs: Given edge-weighted graph G =
(V,E,w) and vertex subset U ⊆ V , we let G[U] =
(U, {e : e ⊆ U}, w) be the induced graph of U . Given

two edge-weight functions w and w′ on disjoint edge sets

E and E′, we let w � w′ be the edge-weight function

that gives w(e) to each e ∈ E and w′(e′) to each

e′ ∈ E′. We let dG(u, v) be the weight of the shortest

path between u and v according to w in G and for S ⊆ V
we let dG(v, S) = minu∈S dG(v, u). The diameter of

G is the maximum distance between a pair of vertices,

i.e. maxu,v∈U dG(u, v). The strong diameter of S ⊆ V

is the diameter of the induced graph G[S], as opposed

to the weak diameter maxu,v∈S dG(u, v) (which is the

maximum distance w.r.t. dG). A partition C of V has

strong (resp. weak) diameter Δ if G[Ci] has strong (resp.

weak) diameter for every Ci ∈ C. The (closed) ball

BG(v, r) := {u : dG(u, v) ≤ r} is all vertices within

distance r from v in G. We drop the G subscript when

the graph is clear from context. We let n := |V | be the

number of nodes in G throughout this paper. A metric

space (X, dX) induces a complete graph G with X as

a vertex set, where the weight of the edge {u, v} equals

to the metric distance dX(u, v).
Dangling Net Constructions: We summarize results

regarding dangling nets for general graphs; see the full

version of our paper [BCF+23] for corresponding results

for pathwidth- and doubling dimension-bounded graphs.

Theorem III.1 ([Fil20]). Every weighted graph G =
(V,E,w) has a poly-time computable Δ-covering
(O(log n), O(log n))-sparse dangling net for every Δ >
0.

Theorems III.1 is proven in [Fil20] in the context of

“MPX partitions”. There we sample shifts {δt}t∈N and

each vertex v joins the cluster of the center t maximizing

δt − dG(v, t). This is equivalent to our framework here,

where in our dangling net we add t at distance Δ −
δt from its corresponding vertex in G. The statement

corresponding to Theorem III.1 is Theorem 4 of III.1.

IV. HIERARCHIES VIA

CLUSTER AGGREGATION AND DANGLING NETS

In this section we reduce the existence of strong

sparse partition hierarchies to the existence of good

dangling nets and cluster aggregation solutions. Our

67

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

algorithm for doing so is Algorithm 1. It may be useful

for the reader to recall the relevant definitions: strong

sparse hierarchies (Definition I.3), cluster aggregation

(Definition I.5) and dangling nets (Definition I.6).

Algorithm 1: SSP Hierarchy

input : Weighted graph G = (V,E,w) (edge

weights at least 1), algorithm for

Δ-covering (α, τ)-sparse dangling net,

algorithm for β-distortion cluster

aggregation.

output: A 2β · (2α+ 1)-hierarchy of strong

(8α+ 4, τ, γ)-sparse partitions.

1 i = 0 and γ = 2β(2α+ 1).
2 Set C0 = {{v} : v ∈ V }.

3 while Ci = {{V }} do
4 Set Δ = 2αβ · γi.

5 Compute a Δ-covering (α, τ)-sparse dangling

net N .

6 Compute a β-distortion cluster aggregation

solution f on G+N with portals N and

clusters Ci ∪ {{t}}t∈N with corresponding

coarsened partition C′ := {f−1(t) : t ∈ N}.

7 Let Ci+1 = {C \N | C ∈ C′}.

8 i ← i+ 1.

9 return C0, C1, C2 . . .

Formally, we show the following theorem whose proof

is illustrated in Figure 7.

Theorem I.7. Fix edge-weighted graph G and α, β, τ ≥
0. If for every Δ > 0:

• Dangling Net: there is a dangling net N that is
Δ-covering (α, τ)-sparse and;

• Cluster Aggregation: G + N cluster aggregation
on portals N is always β-distortion solvable;

then, G has a 2β · (2α+ 1)-hierarchy of strong (8α +
4, τ)-sparse partitions. Furthermore, if each N and clus-
ter aggregation solution is poly-time computable then the
hierarchy is poly-time computable.

Proof. We begin by describing our algorithm for strong

sparse partition hierarchies in words; see Algorithm 1

for pseudo-code. Our algorithm proceeds in rounds in

a bottom up fashion, with round 0 being the trivial

partition C0 to singletons, and round i constructing the

coarsening of strong sparse partition Ci to obtain strong

sparse partition Ci+1.

In the remainder, we elaborate on the coarsening step

of round i. Here, we receive as input a strong γi-diameter

(8α+4, τ)-sparse partition Ci. Let Δ = 2αβ · γi. Using

the assumption of our theorem, we create a Δ-covering

(α, τ)-sparse dangling net N .
Next, we apply the cluster aggregation algorithm in

the graph G + N using N as the portals and Ci with

a singleton cluster for each element of N as the input

clusters. As a result we obtain assignment function f
and corresponding coarsening C′ := {f−1(t)}t∈N . We

obtain Ci+1 by removing any vertex in N from any

cluster in C′.
We now establish that for every i, Ci forms a strong

γi-diameter (α, τ)-sparse partition. The claim holds for

i = 0 since C0 is a strong γ0-diameter (4(α + 1), γ)-
sparse partition. Consider arbitrary i > 0. We assume by

induction that Ci is a strong γi-diameter (4(α + 1), τ)-
sparse partition. Recall that Δ = 2αβ · γi.

We begin by bounding the diameter of every cluster in

Ci. For any vertex v ∈ V , we know that dG+N (v,N) ≤
Δ. Next we obtain a solution to the cluster aggregation

problem f such that

dG+N [f−1(v)](v, f(v)) ≤ dG+N (v,N) + β · γi

≤ Δ+ β · γi.

It follows that f−1(v) has strong diameter at most

2 · (Δ+ β · γi
)
= 2 · (2αβ + β) · γi

= 2β · (2α+ 1) · γi

= γi+1.

Finally, in the actual partition that we use, Ci+1, we

only remove vertices of degree 1 and this can only

decrease the diameter. We conclude that Ci+1 has strong

diameter at most γi+1 as required. It is also clear that

Ci+1 coarsens Ci.
Next, we prove the ball preservation property. Fix a

vertex v ∈ V . Consider a ball BG(v,R) around v of

radius R = Δ
4α . For every u ∈ BG(v,R), the cluster

aggregation solution assigns u to a portal tu ∈ N . By

the guarantees of cluster aggregation we have

dG+N (v, tu) ≤ dG+N (v, u) + dG+N (u, tu)

≤ dG(v, u) + dG+N (u,N) + β · γi
≤ dG+N (v,N) + 2dG(v, u) + β · γi
≤ dG+N (v,N) +

Δ

2α
+

Δ

2α

= dG+N (v,N) +
Δ

α
.

As N is a Δ-covering (α, τ)-sparse dangling net, it holds

that∣∣∣∣
{
t ∈ N | dG+N (v, t) ≤ dG+N (v,N) +

Δ

α

}∣∣∣∣ ≤ τ.

68

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

It follows that the vertices in BG(v,R) are assigned to

at most τ different portals, as required.

Finally, to conclude that Ci+1 is (8α + 4, τ)-sparse,

we observe that

γi+1

R
=

γi+1

Δ
4α

=
4α · γi+1

2αβ · γi

=
2γ

β

=
2 · 2β · (2α+ 1)

β

= 8α+ 4 ,

concluding our analysis and proof.

V. IMPROVED CLUSTER AGGREGATION

Having reduced strong sparse partition hierarchies to

dangling nets and cluster aggregation in the previous

section, we now give our new algorithms for O(log κ)-
distortion cluster aggregation solutions in general graphs

when we are given κ ≤ n input clusters; see the full ver-

sion of our work [BCF+23] for results for trees, doubling

dimension-bounded and pathwidth-bounded graphs. The

reader may want to review the definition of cluster

aggregation (Definition I.5).

The following summarizes the main theorem of this

section.

Theorem V.1. Every instance of cluster aggregation
with input partition C = {C1, . . . , Cκ} has an O(log κ)-
distortion solution that can be computed in polynomial
time.

To show the above we will bound the “detour” of

a given cluster aggregation solution f ; informally, how

much extra distance a vertex travels in the solution.

Definition V.2 (Cluster Aggregation Detour). Given
cluster aggregation solution f in graph G on portals
P , we let the detour of vertex v be

dtrf (v) := dG[f−1(f(v))](v, f(v))− dG(v, P).

Observe that cluster aggregation solution f has distortion

β if dtrf (v) ≤ β ·Δ for every vertex v.

Our main approach is to grow the cluster of each

portal in a round-robin and geometric fashion but treat

each vertex’s path to its nearest cluster with a portal as

having length 0; this idea is generally in the spirit of the

star decompositions of [DGR06] (see also the related

Relaxed Voronoi algorithm [Fil19b]).

To formalize this, for each cluster Ci ∈ C, arbitrarily

choose a representative vertex vi ∈ Ci, and let πi denote

a shortest path in G from vi to its closest portal in P .

At all times in the algorithm, we refer to the maximal
internally disjoint (MID) prefix of πi as π′

i. It is the

maximal prefix of πi such that its final node is the only

node of the prefix belonging to a cluster already assigned

to some portal. We denote the final node of the prefix

by final(π′
i). Initially no clusters are assigned, and thus

π′
i = πi, and final(π′

i) is the closest portal to vi.
Also observe that we may assume without loss of

generality that no cluster contains more than one portal:

any assignment that uses more than one portal contained

in a given cluster Ci has infinite detour (that is, the portal

not assigned cluster Ci is not reachable from any of its

assigned clusters), and the use of one portal over another

can increase the detour by at most Δ.

Algorithm Overview: Order the portals arbitrarily

p1, . . . , pL, and proceed in rounds. In every round j,

each portal p� in sequence expands f−1(p�), the set of

clusters assigned to it, by claiming all clusters Ci ∈ C
such that f(final(π′

i)) = p�, and all of the clusters along

the paths π′
i. In other words, p� claims all the clusters

Ck such that for some cluster Ci with f(final(π′
i)) = p�,

Ck intersects π′
i.

Portal p� repeats this expansion a geometric variable

g
(j)
� -many times, then we move on to the next portal.

Clearly f−1(p�) remains connected. We will show that

only O(log(|C|)) rounds are needed to assign every

cluster to a portal, and that the total detour of a node

assigned to any portal p� is at most 2Δ · ∑j g
(j)
� ,

which will suffice to prove the theorem. The algorithm

is presented formally in Algorithm 2 and illustrated in

Figure 8.

Proof of Theorem V.1. We begin by showing that with

high probability, after 10 log |C| rounds f is defined on

the entire set C.

Lemma V.3. The algorithm assigns every cluster, with
high probability.

Proof. We claim that in each round j, an unassigned

cluster Ci has probability at least 1
2 of being assigned

to a portal. Consider the MID prefix π′
i of πi at the

start of round j, and let p�∗ = f(final(π′
i)). If no vertex

along π′
i was assigned to another cluster before iteration

∗, then in iteration
∗ we will set f(Ci) = p�∗ , and

be done with Ci. Otherwise, let
′ be the first iteration

where some node u lying on π′
i is assigned to some

other cluster. It may be that Ci was assigned, and we

are done. Otherwise, let h be the expansion iteration for

69

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

(a) Input partition. (b) Initial MID paths. (c) Update 1. (d) Update 2.

(e) Update 3. (f) Update 4. (g) Update 5. (h) Update 6 (output).

Fig. 8: An illustration of our cluster aggregation algorithm. 8a gives the initial partition C in blue and initialized

output C′ in red. 8b gives the initial MID paths. We assume that the geometric random variables (left to right) is

2, 1, 1 in the first round and 1, 1, 0 in the second round. 8c, 8d, 8e, 8f, 8g and 8h give the updated C′ and MID

paths after each heads.

Algorithm 2: General Graph CA

input : Weighted graph G = (V,E,w), portal

set P ⊆ V , partition C = {Ci}i into

clusters of strong diameter at most Δ.

output: Assignment f : C → P of additive

distortion β = O(log|C|).
1 Name the portals P = {p1, . . . , pL}
2 For each p� in cluster Ci, set f(Ci) = p�
3 for rounds j = 1, 2, . . . , 10 log|C| do
4 for portals p� = p1, . . . , pL do
5 Draw g

(j)
� ∼ Geom(12)

6 for h = 1, . . . , g
(j)
� (expansion iterations)

do
7 Set U1 to all Ci ∈ C such that Ci is

unassigned and f(final(π′
i)) = p�

8 Set U2 to all Cj ∈ C such that

∃Ci ∈ U1 such that Cj ∩ π′
i = ∅

// Note U1 ⊆ U2

9 For every cluster Ci ∈ U2 set

f(Ci) = p�

10 return f

p�′ at which this first occurs. At this point the MID prefix

π′
i is updated accordingly and f(final(π′

i)) = p�′ . If

p�′ performs one additional expansion iteration then the

cluster Ci will be assigned to p�′ . By the memorylessness

of geometric distributions, this occurs with probability

1
2 . It follows that indeed Ci is clustered in round j with

probability at least 1
2 .

While the rounds are not necessarily independent, it

is clear from the above argument that this bound holds

for any unassigned cluster in round j conditioned on any

events that depend only on previous rounds. Therefore,

denoting by BCi,j the event that cluster Ci is not
assigned in round j, we have that Pr[Ci not assigned]
is

= Pr

[⋂
j

BCi,j

]

=
∏
j

Pr [BCi,j | BCi,1, . . . , BCi,j−1]

≤
(
1

2

)10 log|C|

=
1

|C|10 .

Taking a union bound over C gives the desired result.

The following summarizes the detour guarantees of

our algorithm.

Lemma V.4. The algorithm produces an assignment
with detour dtrf ≤ O(log|C|) ·Δ, with high probability.

Proof. We claim that in any round j, a cluster Ci

assigned to some p� in its h’th iteration of expansion

70

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

satisfies ∀v ∈ Ci that

dG[f−1(p�)](v, p�) ≤ dG(v, P) + 2

⎛
⎝ j−1∑

j′=1

g
(j′)
� + h

⎞
⎠ ·Δ

(1)

We prove this by induction. When j = 0, only the portals

are sent to themselves, and hence the distortion is 0. For

any j ≥ 1, consider some cluster Ci claimed by portal p�
during round j after h expansion iterations. This means

there was some cluster Ci′ such that it’s MID prefix

π′
i′ intersects Ci, and f(final(π′

i′)) = p� (note that it

is possible that i = i′). Let w ∈ Ci ∩ π′
i′ . Note that

a shortest path from w to P follows π′
i. As final(π′

i′)
is already assigned to p� at this time, by the induction

hypothesis it holds that dG[f−1(p�)](final(π
′
i′), p�) ≤

dG(final(π
′
i′), P) + 2

(∑j−1
j′=1 g

(j′)
� + (h− 1)

)
· Δ. We

conclude that for every vertex v ∈ Ci it holds that (see

Figure 9 for an illustration)

dG[f−1(p�)](v, p�)

≤ dG[f−1(p�)](v, w) + dG[f−1(p�)](w, final(π
′
i′))

+ dG[f−1(p�)](final(π
′
i′), p�)

≤ dG[f−1(p�)](v, w) + dG(w, final(π
′
i′))

+ dG(final(π
′
i′), P)

+ 2

⎛
⎝ j−1∑

j′=1

g
(j′)
� + (h− 1)

⎞
⎠ ·Δ

= dG[f−1(p�)](v, w) + dG(w,P)

+ 2

⎛
⎝ j−1∑

j′=1

g
(j′)
� + (h− 1)

⎞
⎠ ·Δ

≤ dG(v, P) + 2dG[f−1(p�)](v, w)

+ 2

⎛
⎝ j−1∑

j′=1

g
(j′)
� + (h− 1)

⎞
⎠ ·Δ

≤ dG(v, P) + 2

⎛
⎝ j−1∑

j′=1

g
(j′)
� + h

⎞
⎠ ·Δ .

With the claim proved, we get that at the end of

the algorithm every p� and v ∈ f−1(p�), satisfies

dG[f−1(p�)](v, p�) ≤ dG(v, P) + 2 · (∑10 log|C|
j′=1 g

(j′)
�) ·Δ.

Let X ∼ Bin(40 log|C|, 1
2), and observe that the prob-

ability of needing more than 40 log|C| coin tosses to

get 10 log|C| tails is equal to the probability that exactly
40 log|C| coin tosses results in fewer than 10 log|C| tails.

Ci
v

w

Ci′

final(π′ i′

)

f−1(pl)

pl

Fig. 9: Paths involved in bounding dG[f−1(p�)](v, p�).
Blue path π′

i′ is the MID prefix that caused Ci to be

assigned to p�; yellow path is a shortest path in Ci, so

has length at most Δ; red path is a shortest path within

coarsened cluster f−1(p�), so its length is bounded by

the induction hypothesis.

That is, we have the sum of IID geometric random

variables Pr
[∑10 log |C|

j′=1 g
(j′)
� > 40 log |C|

]
is

= Pr [X < 10 log |C|]
= Pr

[
X <

1

2
E [X]

]

< e−E[X]/8 ≤ 1

|C|2
by a standard Chernoff bound. Then, a union bound over

C shows that the algorithm produces an assignment with

detour ≤ 80 log|C| · Δ. Finally, letting BU denote the

event that there is an unassigned cluster, and BR the

event that some assigned node has detour > 80 log|C|·Δ,

we have by lemma V.3 and a union bound:

Pr[dtrf > 80 log|C| ·Δ] ≤ Pr[BU] + Pr[BR]

≤ 1

|C|9 +
1

|C|
≤ 2

|C| .

As κ = |C|, the theorem follows.

VI. COMBINING REDUCTION, CLUSTER

AGGREGATION AND DANGLING NETS

In this section, we combine our reduction of strong

sparse partitions to dangling nets and cluster aggregation

(Theorem I.7) with known dangling net constructions

and our cluster aggregation solutions from Section V.

The result is our strong sparse partition hierarchies

(Definition I.3) which when fed into Theorem I.4 gives

our UST constructions. We give our results for general

graphs; see the full version of our work [BCF+23] for

results on pathwidth- and doubling-dimension bounded

graphs.

71

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

Theorem VI.1. Every edge-weighted graph G =
(V,E,w) admits a γ-hierarchy of (α, τ)-sparse strong
partitions for α = τ = O(log n) and γ = O(log2 n).

Proof. By Theorem III.1 every general graph has a

poly-time computable Δ-covering (O(log n), O(log n))-
sparse dangling net N for every Δ > 0. Furthermore,

for any such N we have that G + N has a poly-time

computable O(log n)-distortion cluster aggregation by

Theorem V.1. Applying our reduction theorem (Theo-

rem I.7) gives the result.

We note that our cluster aggregation for trees (see the full

version [BCF+23]) allows us to improve γ to O(log n)
in the above theorem (for the case where G is a tree).

Combining Theorem I.4 with Theorem VI.1 gives our

UST theorem for general graphs.

Theorem VI.2. Every edge-weighted graph G =
(V,E,w) admits an O(log7 n)-approximate universal
Steiner tree. Furthermore, this tree can be computed in
polynomial time.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work we gave the first poly-logarithmic

universal Steiner trees in general graphs and strong

sparse partition hierarchies. Our approach reduces poly-

logarithmic strong sparse partition hierarchies to the

cluster aggregation problem and dangling nets and then

leverages a known connection between strong sparse

partition hierarchies and universal Steiner trees. We gave

O(log n)-distortion solutions for cluster aggregation and

improved solutions in trees and bounded pathwidth and

doubling dimension graphs.

We conclude with some open questions and potential

future directions:

1) Improved UST and Strong Sparse Partition
Bounds: The most obvious remaining open direc-

tion is to close the gap between our O(log7 n)-
approximate USTs and the known Ω(logn) lower

bound of [JLN+05]. Note that even assuming that

G is the complete graph with metric weights, the

best upper bound is O(log2 n) [GHR06]. Along

these lines, it would be interesting to improve the

reduction of USTs to hierarchical strong sparse par-

titions or to improve the γ-parameter in the strong

hierarchical sparse partitions for general graphs (the

α and τ parameters are tight up to a log log n factor

[Fil20]).

2) USTs and Strong Sparse Partition Hierarchies
for New Graph Families: Similarly, improving

the bounds for new restricted graph families to

get better USTs and strong sparse partitions is

exciting. Currently, we know of no super-constant

lower bound for UST for either constant treewidth

or constant pathwidth graphs.

3) Improved Cluster Aggregation in Restricted
Graph Families: One particularly interesting piece

of this puzzle for restricted graph families is the

status of cluster aggregation in special graph fami-

lies. In particular, we conjecture that planar graphs

and, more generally, minor-free graphs always ad-

mit O(1)-distortion cluster aggregation solutions.

Likewise, we conjecture that Õ(d)-distortion clus-

ter aggregation should be possible in graphs of

doubling dimension d (our current upper bound is

Õ(d2)).
4) Scattering Partitions: A graph decomposition

closely related to sparse partitions are the scat-

tering partitions of [Fil20]. A (1, τ,Δ)-scattering

partition is a partition into connected clusters with

(weak) diameter at most Δ, such that every shortest

path of length at most Δ intersects at most τ
different clusters. Note that every strong sparse

partition is also scattering, while weak sparse par-

titions and scattering partitions are incomparable.

In a similar spirit to Theorem I.4, in [Fil20] it

was shown that if every induced subgraph of

G admits an (1, τ,Δ)-scattering partition for all

Δ, then G admits an O(τ3)-stretch solution for

the “Steiner point removal problem” (SPR). See

[Fil20] for background and definitions. Recently

Chang et al. [CCL+23] showed that planar graphs

admit (1, O(1))-scattering partition schemes (im-

plying an O(1)-stretch solution for SPR prob-

lem on such graphs). However, scattering parti-

tions for general graphs are not yet understood.

Filtser [Fil20] showed that n-vertex graphs ad-

mit (1, O(log2 n))-scattering partition schemes, and

conjectured that they admit (1, O(log n))-scattering

partition schemes.

ACKNOWLEDGMENTS

The authors would like to thank Bernhard Haeupler for

helpful discussions leading to our doubling dimension

result. The authors would also like to thank R. Ravi for

many useful discussions related to Theorem V.1.

REFERENCES

[AA92] Noga Alon and Yossi Azar. On-line steiner

trees in the euclidean plane. In Symposium
on Computational Geometry (SoCG), pages

337–343, 1992. 6

72

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

[ABCP96] Baruch Awerbuch, Bonnie Berger, Lenore

Cowen, and David Peleg. Fast distributed

network decompositions and covers. Jour-
nal of Parallel and Distributed Computing,

39(2):105–114, 1996. 3

[ABN08] Ittai Abraham, Yair Bartal, and Ofer

Neiman. Nearly tight low stretch spanning

trees. In IEEE Symposium on Foundations
of Computer Science (FOCS), pages 781–

790, 2008. 3

[ACE+20] Ittai Abraham, Shiri Chechik, Michael

Elkin, Arnold Filtser, and Ofer Neiman.

Ramsey spanning trees and their applica-

tions. ACM Transactions on Algorithms
(TALG), 16(2):1–21, 2020. 6

[ACGP16] Ittai Abraham, Shiri Chechik, Cyril

Gavoille, and David Peleg. Forbidden-set

distance labels for graphs of bounded

doubling dimension. ACM Transactions on
Algorithms (TALG), 12(2):1–17, 2016. 3

[AGGM06] Ittai Abraham, Cyril Gavoille, Andrew V

Goldberg, and Dahlia Malkhi. Routing in

networks with low doubling dimension. In

26th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’06),
pages 75–75. IEEE, 2006. 3

[AKR91] Ajit Agrawal, Philip Klein, and Ramamoor-

thi Ravi. When trees collide: An approxi-

mation algorithm for the generalized steiner

problem on networks. In Annual ACM Sym-
posium on Theory of Computing (STOC),
pages 134–144, 1991. 6

[AN12] Ittai Abraham and Ofer Neiman. Using

petal-decompositions to build a low stretch

spanning tree. In Annual ACM Symposium
on Theory of Computing (STOC), pages

395–406, 2012. 6

[Ang07] Spyros Angelopoulos. Improved bounds for

the online steiner tree problem in graphs of

bounded edge-asymmetry. In Annual ACM-
SIAM Symposium on Discrete Algorithms
(SODA), volume 7, pages 248–257. Cite-

seer, 2007. 6

[AP90] Baruch Awerbuch and David Peleg. Sparse

partitions (extended abstract). In Sympo-
sium on Foundations of Computer Science
(FOCS), pages 503–513, 1990. 3, 4

[Bar96] Yair Bartal. Probabilistic approximations

of metric spaces and its algorithmic appli-

cations. In Symposium on Foundations of

Computer Science (FOCS), pages 184–193,

1996. 4

[Bar98] Yair Bartal. On approximating arbitrary

metrices by tree metrics. In Annual
ACM Symposium on Theory of Computing
(STOC), pages 161–168, 1998. 6

[Bar04] Yair Bartal. Graph decomposition lemmas

and their role in metric embedding meth-

ods. In European Symposium on Algorithms
(ESA), pages 89–97, 2004. 3

[BCF+23] Costas Busch, Da Qi Chen, Arnold Filtser,

Daniel Hathcock, D Ellis Hershkowitz, and

Rajmohan Rajaraman. One tree to rule them

all: Poly-logarithmic universal steiner tree.

arXiv preprint arXiv:2308.01199, 2023. 2,

3, 5, 6, 8, 10, 12, 13

[BCK11] Anand Bhalgat, Deeparnab Chakrabarty,

and Sanjeev Khanna. Optimal lower

bounds for universal and differentially pri-

vate steiner trees and tsps. In APPROX-
RANDOM, pages 75–86. Springer, 2011. 6

[BDR+12] Costas Busch, Chinmoy Dutta, Jaikumar

Radhakrishnan, Rajmohan Rajaraman, and

Srivathsan Srinivasagopalan. Split and join:

Strong partitions and universal steiner trees

for graphs. In IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages

81–90, 2012. 2, 4, 5, 6, 7, 8

[BG89] Dimitris Bertsimas and Michelangelo

Grigni. Worst-case examples for the

spacefilling curve heuristic for the euclidean

traveling salesman problem. Operations
Research Letters, 8(5):241–244, 1989. 6

[BGK+11] Guy E Blelloch, Anupam Gupta, Ioannis

Koutis, Gary L Miller, Richard Peng, and

Kanat Tangwongsan. Near linear-work par-

allel SDD solvers, low-diameter decompo-

sition, and low-stretch subgraphs. In ACM
Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 13–22,

2011. 3

[BGRS10] Jaroslaw Byrka, Fabrizio Grandoni, Thomas

Rothvoß, and Laura Sanità. An improved

lp-based approximation for steiner tree. In

Annual ACM Symposium on Theory of
Computing (STOC), pages 583–592, 2010.

6

[BGRS13] Jaroslaw Byrka, Fabrizio Grandoni, Thomas

Rothvoß, and Laura Sanità. Steiner tree ap-

proximation via iterative randomized round-

73

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

ing. Journal of the ACM (JACM), 60(1):1–

33, 2013. 6

[BGS16] Guy E Blelloch, Yan Gu, and Yihan

Sun. Efficient construction of proba-

bilistic tree embeddings. arXiv preprint
arXiv:1605.04651, 2016. 6

[BLT14] Costas Busch, Ryan LaFortune, and

Srikanta Tirthapura. Sparse covers for

planar graphs and graphs that exclude a

fixed minor. Algorithmica, 69(3):658–684,

2014. 2

[CCL+23] Hsien-Chih Chang, Jonathan Conroy, Hung

Le, Lazar Milenkovic, Shay Solomon, and

Cuong Than. Resolving the steiner point re-

moval problem in planar graphs via shortcut

partitions. CoRR, abs/2306.06235, 2023. 13

[CG21] Yi-Jun Chang and Mohsen Ghaffari.

Strong-diameter network decomposition.

In ACM Symposium on Principles of
Distributed Computing (PODC), pages

273–281, 2021. 3

[CJK+22] Artur Czumaj, Shaofeng H-C Jiang, Robert

Krauthgamer, Pavel Veselỳ, and Mingwei

Yang. Streaming facility location in high di-

mension via geometric hashing. In Sympo-
sium on Foundations of Computer Science
(FOCS), pages 450–461. IEEE, 2022. 4, 6

[DGR06] Kedar Dhamdhere, Anupam Gupta, and

Harald Räcke. Improved embeddings of

graph metrics into random trees. In Annual
ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), volume 22, pages 61–69,

2006. 6, 10

[EHRG22] Michael Elkin, Bernhard Haeupler, Václav

Rozhoň, and Christoph Grunau. De-

terministic low-diameter decompositions

for weighted graphs and distributed and

parallel applications. arXiv preprint
arXiv:2204.08254, 2022. 3

[FG19] Sebastian Forster and Gramoz Goranci. Dy-

namic low-stretch trees via dynamic low-

diameter decompositions. In ACM Sym-
posium on Theory of Computing (STOC),
pages 377–388, 2019. 3

[Fil19a] Arnold Filtser. On strong diameter

padded decompositions. In Approximation,
Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, AP-
PROX/RANDOM 2019, September 20-22,
2019, Massachusetts Institute of Technol-

ogy, Cambridge, MA, USA., pages 6:1–6:21,

2019. 3

[Fil19b] Arnold Filtser. Steiner point removal

with distortion O(log k) using the relaxed-

voronoi algorithm. SIAM J. Comput.,
48(2):249–278, 2019. 10

[Fil20] Arnold Filtser. Scattering and sparse par-

titions, and their applications. In Ar-

tur Czumaj, Anuj Dawar, and Emanuela

Merelli, editors, International Colloquium
on Automata, Languages and Programming
(ICALP), volume 168, pages 47:1–47:20,

2020. 2, 3, 4, 5, 6, 8, 13

[Fil22] Arnold Filtser. Hop-constrained metric em-

beddings and their applications. In Sympo-
sium on Foundations of Computer Science
(FOCS), pages 492–503. IEEE, 2022. 6

[FKT19] Arnold Filtser, Robert Krauthgamer, and

Ohad Trabelsi. Relaxed voronoi: A sim-

ple framework for terminal-clustering prob-

lems. In Symposium on Simplicity in Algo-
rithms (SOSA), page 1, 2019. 3

[FL21] Arnold Filtser and Hung Le. Clan embed-

dings into trees, and low treewidth graphs.

In Annual ACM Symposium on Theory of
Computing (STOC), pages 342–355, 2021.

6

[FL22] Arnold Filtser and Hung Le. Locality-

sensitive orderings and applications to re-

liable spanners. In Stefano Leonardi and

Anupam Gupta, editors, Annual ACM Sym-
posium on Theory of Computing (STOC),
pages 1066–1079. ACM, 2022. 3

[FLL06] Pierre Fraigniaud, Emmanuelle Lebhar, and

Zvi Lotker. A doubling dimension threshold

θ (loglog n) for augmented graph naviga-

bility. In Annual European Symposium on
Algorithms (ESA), pages 376–386. Springer,

2006. 3

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Ku-

nal Talwar. A tight bound on approximating

arbitrary metrics by tree metrics. In Annual
ACM Symposium on Theory of Computing
(STOC), pages 448–455, 2003. 6

[FS10] Jacob Fox and Benny Sudakov. Decom-

positions into subgraphs of small diameter.

Combinatorics, Probability and Computing,

19(5-6):753–774, 2010. 3

[FS16] Arnold Filtser and Shay Solomon. The

greedy spanner is existentially optimal. In

74

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 9–17,

2016. 3

[GGK13] Albert Gu, Anupam Gupta, and Amit Ku-

mar. The power of deferral: maintaining

a constant-competitive steiner tree online.

In Annual ACM Symposium on Theory of
Computing (STOC), pages 525–534, 2013.

6

[GGL+08] Fabrizio Grandoni, Anupam Gupta, Stefano

Leonardi, Pauli Miettinen, Piotr Sankowski,

and Mohit Singh. Set covering with our

eyes closed. In Symposium on Foundations
of Computer Science (FOCS), pages 347–

356. IEEE, 2008. 7

[GHR06] Anupam Gupta, Mohammad T Hajiaghayi,

and Harald Räcke. Oblivious network de-

sign. In Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 970–

979, 2006. 2, 6, 13

[GJ79] Michael R Garey and David S Johnson.

Computers and intractability, volume 174.

freeman San Francisco, 1979. 6

[GK14] Anupam Gupta and Amit Kumar. Online

steiner tree with deletions. In Annual ACM-
SIAM Symposium on Discrete Algorithms
(SODA), pages 455–467. SIAM, 2014. 6

[GKR00] Naveen Garg, Goran Konjevod, and Ra-

mamoorthi Ravi. A polylogarithmic approx-

imation algorithm for the group steiner tree

problem. Journal of Algorithms, 37(1):66–

84, 2000. 6

[GKSS10] Igor Gorodezky, Robert D Kleinberg,

David B Shmoys, and Gwen Spencer. Im-

proved lower bounds for the universal and

a priori tsp. In APPROX-RANDOM, pages

178–191. Springer, 2010. 6

[GMP23] Arun Ganesh, Bruce M Maggs, and Deb-

malya Panigrahi. Universal algorithms for

clustering problems. ACM Transactions on
Algorithms, 19(2):1–46, 2023. 7

[HHZ21] Bernhard Haeupler, D Ellis Hershkowitz,

and Goran Zuzic. Tree embeddings for

hop-constrained network design. In Annual
ACM Symposium on Theory of Computing
(STOC), pages 356–369, 2021. 6

[HKL06] Mohammad Taghi Hajiaghayi, Robert D.

Kleinberg, and Frank Thomson Leighton.

Improved lower and upper bounds for

universal TSP in planar metrics. In

Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 649–658,

2006. https://dl.acm.org/citation.cfm?id=

1109557.1109628. 6

[HR92] Frank K Hwang and Dana S Richards.

Steiner tree problems. Networks, 22(1):55–

89, 1992. 1

[IW91] Makoto Imase and Bernard M Waxman.

Dynamic steiner tree problem. SIAM Jour-
nal on Discrete Mathematics, 4(3):369–384,

1991. 6

[JLN+05] Lujun Jia, Guolong Lin, Guevara Noubir,

Rajmohan Rajaraman, and Ravi Sundaram.

Universal approximations for TSP, Steiner

tree, and set cover. In Annual ACM Sym-
posium on Theory of Computing (STOC),
pages 386–395, 2005. 2, 4, 6, 13

[KK17] Lior Kamma and Robert Krauthgamer.

Metric decompositions of path-separable

graphs. Algorithmica, 79(3):645–653, 2017.

3

[KPR93] Philip N. Klein, Serge A. Plotkin, and Satish

Rao. Excluded minors, network decompo-

sition, and multicommodity flow. In Annual
ACM Symposium on Theory of Computing
(STOC), pages 682–690, 1993. 3

[KRX08] Goran Konjevod, Andréa W Richa, and

Donglin Xia. Dynamic routing and loca-

tion services in metrics of low doubling

dimension. In International Symposium on
Distributed Computing (DISC), pages 417–

417, 2008. 3

[LS93] Nathan Linial and Michael Saks. Low diam-

eter graph decompositions. Combinatorica,

13(4):441–454, 1993. 3

[MPX13] Gary L. Miller, Richard Peng, and

Shen Chen Xu. Parallel graph

decomposition using random shifts.

In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA),
pages 196–203, 2013. 2, 4

[NPS11] Joseph Naor, Debmalya Panigrahi, and Mo-

hit Singh. Online node-weighted steiner tree

and related problems. In Symposium on
Foundations of Computer Science (FOCS),
pages 210–219. IEEE, 2011. 6

[PBI89] Loren K Platzman and John J Bartholdi III.

Spacefilling curves and the planar travelling

salesman problem. Journal of the ACM
(JACM), 36(4):719–737, 1989. 6

75

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

[RG20] Václav Rozhoň and Mohsen Ghaffari.

Polylogarithmic-time deterministic network

decomposition and distributed derandom-

ization. In ACM Symposium on Theory of
Computing (STOC), pages 350–363, 2020.

3

[RS86] Neil Robertson and Paul D. Seymour.

Graph minors. ii. algorithmic aspects

of tree-width. Journal of algorithms,

7(3):309–322, 1986. 3

[RZ05] Gabriel Robins and Alexander Zelikovsky.

Tighter bounds for graph steiner tree ap-

proximation. SIAM Journal on Discrete
Mathematics, 19(1):122–134, 2005. 6

[SS08] Frans Schalekamp and David B Shmoys.

Algorithms for the universal and a priori

tsp. Operations Research Letters, 36(1):1–

3, 2008. 6

[XM22] Chenyang Xu and Benjamin Moseley.

Learning-augmented algorithms for online

steiner tree. In AAAI Conference on Artifi-
cial Intelligence (AAAI), volume 36, pages

8744–8752, 2022. 6

76

Authorized licensed use limited to: Bar Ilan University. Downloaded on April 11,2024 at 13:27:53 UTC from IEEE Xplore. Restrictions apply.

