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Abstract
Given a metric space M = (X, δ), a weighted graph G over X is a metric t-spanner of M if for
every u, v ∈ X, δ(u, v) ≤ δG(u, v) ≤ t · δ(u, v), where δG is the shortest path metric in G. In this
paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given
a sequence of points (s1, . . . , sn), where the points are presented one at a time (i.e., after i steps, we
have seen Si = {s1, . . . , si}). The algorithm is allowed to add edges to the spanner when a new point
arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a
t-spanner Gi for Si for all i, while minimizing the number of edges, and their total weight.

Under the L2-norm in Rd for arbitrary constant d ∈ N, we present an online (1 + ε)-spanner
algorithm with competitive ratio Od(ε−d log n), improving the previous bound of Od(ε−(d+1) log n).
Moreover, the spanner maintained by the algorithm has Od(ε1−d log ε−1) · n edges, almost matching
the (offline) optimal bound of Od(ε1−d) · n. In the plane, a tighter analysis of the same algorithm
provides an almost quadratic improvement of the competitive ratio to O(ε−3/2 log ε−1 log n), by
comparing the online spanner with an instance-optimal spanner directly, bypassing the comparison
to an MST (i.e., lightness). As a counterpart, we design a sequence of points that yields a Ωd(ε−d)
lower bound for the competitive ratio for online (1 + ε)-spanner algorithms in Rd under the L1-norm.

Then we turn our attention to online spanners in general metrics. Note that, it is not possible
to obtain a spanner with stretch less than 3 with a subquadratic number of edges, even in the
offline setting, for general metrics. We analyze an online version of the celebrated greedy spanner
algorithm, dubbed ordered greedy. With stretch factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1),
we show that it maintains a spanner with O(ε−1 log ε−1) · n1+ 1

k edges and O(ε−1n
1
k log2 n) lightness

for a sequence of n points in a metric space. We show that these bounds cannot be significantly
improved, by introducing an instance that achieves an Ω( 1

k
· n1/k) competitive ratio on both sparsity

and lightness. Furthermore, we establish the trade-off among stretch, number of edges and lightness
for points in ultrametrics, showing that one can maintain a (2 + ε)-spanner for ultrametrics with
O(ε−1 log ε−1) · n edges and O(ε−2) lightness.
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18:2 Online Spanners in Metric Spaces

1 Introduction

Let M = (P, δ) be a finite metric space. Let G = (P, E) be a graph on the points of P in
M, where the edges are weighted with the distances between their endpoints. The graph G

is a t-spanner, for t ≥ 1, if δG(u, v) ≤ t · δ(u, v) for all u, v ∈ P , where δG(u, v) is the length
of the shortest path between u and v in G, and δ(u, v) is the distance between u and v in
M.1 The stretch factor t of G is the maximum distortion between the metrics δ and δG.
Spanners were first introduced by Peleg and Schäffer [52], and since then they have turned
out to be one of the fundamental graph structures with numerous applications in the area
of distributed systems and communication, distributed queuing protocol, compact routing
schemes, etc. [25, 43, 53, 54].

The study of Euclidean spanners, where P ⊂ Rd with L2-norm, was initiated by Chew [23].
Since then a large body of research has been devoted to Euclidean spanners due to its
vast range of applications across domains, such as topology control in wireless networks,
efficient regression in metric spaces, approximate distance oracles, data structures, and many
more [34, 38, 57, 60]. Some of the results generalize to metric spaces with constant doubling
dimensions [18] (the doubling dimension of Rd under L2-norm is Θ(d)).

Lightness and sparsity are two fundamental parameters for spanners. The lightness
of a spanner G = (P, E) is the ratio w(G)/w(MST ) between the total weight of G and
the weight of a minimum spanning tree (MST) on P . The sparsity of G is the ratio
|E(G)|/|E(MST )| ≈ |E(G)|/|P | between the number of edges of G and an MST. Since every
spanner is connected and thus contain a spanning tree, the lightness and sparsity of a spanner
G, resp., are trivial lower bounds for the ratio of w(G) and |E(G)| to the optimum weight
and the number of edges.

Online Spanners. We are given a sequence of points (s1, . . . , sn) in a metric space, where
the points are presented one-by-one, i.e., point si is revealed at step i, and Si = {s1, . . . , si}
for i ∈ {1, . . . , n}. The objective of an online algorithm is to maintain a t-spanner Gi for Si

for all i. The algorithm is allowed to add edges to the spanner when a new point arrives,
however it is not allowed to remove any edge from the spanner. Moreover, the algorithm
does not know the total number of points in advance.

The performance of an online algorithm ALG is measured by comparing it with the offline
optimum OPT using the standard notion of competitive ratio [17, Ch. 1]. The competitive
ratio of an algorithm ALG is defined as supσ

ALG(σ)
OPT(σ) , where the supremum is taken over all

input sequences σ, OPT(σ) is the minimum weight of a t-spanner for the (unordered) set
of points in σ, and ALG(σ) denotes the weight of the t-spanner produced by ALG for this
input sequence. Note that, in order to measure the competitive ratio it is important that σ

is a finite sequence of points.
The online spanner problem is motivated by natural application domains. For example,

consider a developing area with limited resources, where new settlements are created suc-
cessively. As the community grows, new roads are built, and there is no reason to remove
existing roads. Alternatively, online spanners are also motivated by distributed mobile
computing, where new subscribers successively join a network. Maintaining a cost-effective
network is equivalent to minimum-weight online spanner problem.

1 Often in the literature, the input metric is the shortest path metric of a graph G = (V, E, w), and a
spanner is required to be a subgraph of the input graph (see e.g. [4]). Here we study metric spanners
where there is no such requirement.
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In the online minimum spanning tree problem, points of a finite metric space arrive
one-by-one, and we need to connect each new point to a previous point to maintain a spanning
tree. Imase and Waxman [44] proved Θ(log n)-competitiveness, which is the best possible
bound. Later, Alon and Azar [2] studied this problem for points in the Euclidean plane, and
proved a lower bound Ω(log n/ log log n) for the competitive ratio. Their result was the first
to analyze the impact of auxiliary points (Steiner points) on a geometric network problem in
the online setting. Several algorithms were proposed over the years for the online minimum
Steiner tree and Steiner forest problems, on graphs in both weighted and unweighted settings;
see [1, 5, 10, 40, 50]. However, these algorithms do not provide any guarantees on the stretch
factor. This leads to the following open problem.

▶ Problem. Determine the best possible bounds for the competitive ratios for the weight and
the number of edges of online t-spanners, for t ≥ 1.

Previously, Gupta et al. [39, Theorem 1.5] constructed online spanners for terminal pairs
in the same model we consider here. The analysis of [39] implicitly implies that, given
a sequence of n points in an online fashion in a general metric space, one can maintain
a O(log n)-spanner with O(n) edges and O(log n) lightness, as pointed out by one of the
authors [59]. Recent work on online directed spanners [36] is not comparable to our results.

In the geometric setting, (1 + ε)-spanners are possible in any constant dimension d ∈ N.
Tight worst-case bounds Θd(ε−d) and Θd(ε1−d) on the lightness and sparsity of offline (1+ε)-
spanners have recently been established by Le and Solomon [47]. Online Euclidean spanners in
Rd have been introduced by Bhore and Tóth [14]. In the real line (1D), they have established
a tight bound of O((ε−1/ log ε−1) log n) for the competitive ratio of any online (1+ε)-spanner
algorithm for n points. In dimensions d ≥ 2, the dynamic algorithm DefSpanner of Gao et
al. [33] maintains a (1 + ε)-spanner with Od(ε−(d+1)n) edges and Od(ε−(d+1) log n) lightness,
and works under the online model (as it never deletes edges when new points arrive). However,
no lower bound better than the 1-dimensional Ω((ε−1/ log ε−1) log n) is currently known in
higher dimensions.

1.1 Our Contribution
See Table 1 for an overview of our results.

Upper Bounds for Points in Rd. Under the L2-norm in Rd, for arbitrary constant d ∈ N,
we present an online algorithm for (1 + ε)-spanner with lightness Od(ε−d log n) and sparsity
O(ε1−d log ε−1) (Theorem 2 in Section 2.1). This improves upon the previous lightness bound
of Od(ε−(d+1) log n) by Gao et al. [33, Lemma 3.8]. In the plane, we give a tighter analysis of
the same algorithm and achieve an almost quadratic improvement of the competitive ratio to
O(ε−3/2 log ε−1 log n) (Theorem 6 in Section 2.2). Recall that in the offline setting, Θ(ε−2)
is a tight worst-case bound for the lightness of a (1 + ε)-spanner in the plane [47]. We obtain
a better dependence on ε by comparing the online spanner with an instance-optimal spanner
directly, bypassing the comparison to an MST (i.e., lightness). The logarithmic dependence
on n cannot be eliminated in the online setting, based on the lower bound in R1 [14].

Lower Bounds for Points in Rd. As a counterpart, we design a sequence of points that
yields a Ωd(ε−d) lower bound for the competitive ratio for online (1 + ε)-spanner algorithms
in Rd under the L1-norm (Theorem 13 in Section 3). This improves the previous bound
of Ω(ε−2/ log ε−1) in R2 under the L1-norm [14]. It remains open whether a similar lower
bound holds in Rd under the L2-norm; the current best lower bound is Ω((ε−1/ log ε−1) log n),
established in [14], holds already for the real line (d = 1).

ESA 2022



18:4 Online Spanners in Metric Spaces

Table 1 Overview of online spanners algorithms. In the last three rows, we compare the spanner
weight directly with the optimum weight (rather than the MST) to bound the competitive ratio.

Family Stretch # of edges Lightness Reference
General metrics (2k − 1)(1 + ε) O(ε−1 log ε−1) n1+ 1

k O(ε−1n
1
k log2 n) Theorem 14

O(log n) O(n) O(log n) [39, 59]
α-HST 2 α

α−1 n − 1 1 Full paper
Ultrametric O(ε−1) n − 1 1 + ε Full paper

2 + ε O(ε−1 log ε−1) n O(ε−2) Full paper
Doubling d-space 1 + ε ε−O(d) n ε−O(d) log n [33]
Euclidean d-space 1 + ε Od(ε−d) n Od(ε−(d+1) log n) [33]

1 + ε Od(ε1−d) n Ω(ε−1n) [56]
1 + ε Od(ε1−d log ε−1) n Od(ε−d log n) Theorem 2

Real line 1 + ε O(n) Θ̃(ε−1 log n) [14]

Family Stretch # of edges Comp. Ratio Reference
General metrics 2k − 1 - Ω( 1

k
· n

1
k ) Theorem 19

Euclidean plane 1 + ε O(ε−1 log ε−1) n Õ(ε−3/2 log n) Theorem 6
Rd with L1-norm 1 + ε - Ω(ε−d) Theorem 13

Points in General Metrics. In Section 4, we study online spanners in general metrics. Note
that it is not possible to obtain a spanner with stretch less than 3 with a subquadratic
number of edges, even in the offline settings, for general metrics. We analyze an online
version of the celebrated greedy spanner algorithm, dubbed ordered greedy. With stretch
factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1), we show that it maintains a spanner
with O(ε−1 log ε−1) · n1+ 1

k edges and O(ε−1n
1
k log2 n) lightness for a sequence of n points

in a metric space (Theorem 14). We show (in Theorem 19) that these bounds cannot be
significantly improved, by introducing an instance where every online algorithm will have
Ω( 1

k · n1/k) competitive ratio on both sparsity and lightness. Next, we establish the trade-off
among stretch, number of edges and lightness for points in ultrametrics. Specifically, we show
(in the full paper) that it is possible to maintain a (2 + ε)-spanner with O(ε−1 log ε−1) · n

edges and O(ε−2) lightness in ultrametrics. Note that as the uniform metric (shortest path
on a clique) is an ultrametric, any subquadratic spanner must have stretch at least 2.

1.2 Related Work

1.2.1 Dynamic & Streaming Algorithms for Graph Spanners

A t-spanner in a graph G = (V, E) is a subgraph H = (V, E′) such that δH(u, v) ≤ t · δG(u, v)
for all pairs of vertices u, v ∈ V . That is, the stretch t is the maximum distortion between the
graph distances δG and δH . Importantly, when G changes (under edge/vertex insertions or
deletions), the underlying metric δG changes, as well. The distance δG(u, v) may dramatically
decrease upon the insertion of the edge uv. In contrast, our model assumes that the distances
in the underlying metric space M = (P, δ) remain fixed, but the algorithm can only see the
distances between the points that have been presented. For this reason, our results are not
directly comparable to models where the underling graph changes dynamically.

For unweighted graphs with n vertices, the current best fully dynamic and single-pass
streaming algorithms can maintain spanners that achieve almost the same stretch-sparsity
trade-off available for the static case: 2k − 1 stretch and O(n1+ 1

k ) edges, for k ≥ 1, which is
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attained by the greedy algorithm [4], and conjectured to be optimal due to the Erdős girth
conjecture [28]. In the dynamic model, the objective is design algorithms and data structures
that minimize the worst-case update time needed to maintain a t-spanner for S over all
steps, regardless of its weight, sparsity, or lightness. See [7, 9, 11, 16] for some excellent work
on dynamic spanners. In the streaming model the input is a sequence (or stream) of edges
representing the edge set E of the graph G. A (single-pass) streaming algorithm decides, for
each newly arriving edge, whether to include it in the spanner. The graph G is too large to fit
in memory, and the objective is to optimize work space and update time [6, 8, 26, 29, 30, 49].

1.2.2 Incremental Algorithms for Geometric Spanners
We briefly review three previously known incremental (1+ε)-spanner algorithms in Euclidean
d-space from the perspective of competitive analysis.

Deformable Spanners. Gao et al. [33] designed a dynamic DefSpanner algorithm that
maintains a (1+ε)-spanner for a dynamic set S in the Euclidean d-space. For point insertions,
it only adds new edges, so it is an online algorithm, as well. It maintains a (1 + ε)-spanner
with Od(ε−d) · n edges and Od(ε−(d+1) log n) lightness. Since the ∥MST(S)∥ is a lower bound
for the optimal spanner weight, its competitive ratio is also Od(ε−(d+1) log n). The key
ingredient of DefSpanner is hierarchical nets [42, 46, 55], a form of hierarchical clustering,
which can be maintained dynamically. Hierarchical nets naturally generalize to doubling
spaces, and so DefSpanner also maintains a (1 + ε)-spanner with ε−O(d) · n edges and
ε−O(d) · log n lightness for doubling dimension d [35, 55].

Well-Separated Pair Decomposition (WSPD). Well-separated pair decomposition was
introduced by Callahan and Kosaraju [21] (see also [37, 41, 51, 58]). For a set S in a metric
space, a WSPD is a collection of unordered pairs W = {{Ai, Bi} : i ∈ I} such that (1)
Ai, Bi ⊂ S for all i ∈ I; (2) min{∥ab∥ : a ∈ Ai, b ∈ Bi} ≤ ϱ · max{diam(Ai), diam(Bi)} for
all i ∈ I, where ϱ is the separation ratio; (3) for each point pair {a, b} ⊂ S there exists a pair
{Ai, Bi} such that Ai and Bi each contain one of a and b. Given a WSPD with separation
ratio ϱ > 4, any graph that contains at least one edge between Ai and Bi, for all i ∈ I, is a
spanner with stretch t = 1 + 8/(ϱ − 4). Setting ϱ ≥ 12ε−1 for 0 < ε < 1, we obtain t ≤ 1 + ε.

Hierarchical clustering provides a WSPD [41, Ch. 3]. Perhaps the simplest hierarchical
subdivisions in Rd are quadtrees. Let T be a quadtree for a finite set S ⊂ Rd. The root of
T is an axis-aligned cube of side length a0, which contains S; it is recursively subdivided
into 2d congruent cubes until each leaf cube contains at most one point in S. For all pairs of
cubes {Q1, Q2} at level ℓ of T , create a pair {Ai, Bi} with Ai = Q1 ∩ S and Bi = Q2 ∩ S

whenever Dℓ ≤ dist(Q1, Qb) < 2Dℓ for Dℓ = ϱ ·diam(Q1) = 12ε−1 ·
√

d ·a0/2ℓ; and repeat for
all levels ℓ ≥ 0. Properties (1)–(3) of a WSPD are easily verified [41, Ch. 3]. The resulting
(1 + ε)-spanner has Od(ε−d) · n edges [41, 42] and lightness Od(ε−(d+1) log n) [14].

For point insertions in Rd, a dynamic quadtree only adds nodes, which in turn creates
new pairs in the WSPD, and new edges in the spanner. This is an online algorithm with the
same guarantees as DefSpanner [14, 42] (see also [32] for an efficient implementation).

Ordered Yao-Graphs and Θ-Graphs. Among the first constructions for (offline) sparse
(1 + ε)-spanners in the Euclidean d-space were Yao- and Θ-graphs [24, 45, 56]. Incremental
versions of Yao-graphs and Θ-graphs were introduced by Bose et al. [20]. Let S = {s1, . . . , sn}
be an ordered set of points in R2. For each si ∈ S, partition the plane into k cones with
apex s and aperture 2π/k. The ordered Yao-graph Yk(S) contains an edge between si and
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18:6 Online Spanners in Metric Spaces

a closest previous point in {sj : j < i} in each cone. The graph Θk(S) is defined similarly,
but in each cone the distance to the apex is measured by the orthogonal projection to a ray
within the cone. Bose et al. [20] showed that the ordered Yao- and Θ-graphs have spanning
ratio at most 1/(1 − 2 sin(π/k)) for k > 8; tighter bounds were later obtained in [19]. In
particular, the ordered Yao- and Θ-graphs are (1 + ε)-spanners for k ≥ Ω(ε−1).

The construction generalizes to Rd for all d ∈ N [56]. For an angle α ∈ (0, π), let A ⊂ Sd−1

be a maximal set of points in the (d−1)-sphere such that mina,b∈A dist(a, b) ≤ α (in radians).
A standard volume argument shows that |A| ≤ Od(α1−d). For each ai ∈ A, create a cone Ci

with apex at the origin o, aperture α, and symmetry axis oai. Note that Rd ⊆
⋃

i Ci. Given
a finite set P ⊂ Rd, we translate each cone Ci to a cone Ci(p) with apex p ∈ P . For every
cone Ci(p), the Yao-graph contains an edge between p and a closest point in P ∩ Ci(p). For
every ε > 0 and d ∈ N, there exists an angle α = α(d, ε) = Θd(ε) for which the Yao-graph is
a (1 + ε)-spanner for every finite set P ⊂ Rd.

Ordered Yao- and Θ-graphs give online algorithms for maintaining a (1 + ε)-spanner for a
sequence of points in Rd. The sparsity of these spanners is bounded by the number of cones
per vertex, Od(ε1−d), which matches the (offline) lower bound of Ωd(ε1−d) [47]. However,
their weight may be significantly higher than optimal: For n equally spaced points in a unit
circle, in any order, Yao- and Θ-graphs yield (1 + ε)-spanners of weight Ω(ε−1) · n, hence
lightness Ω(ε−1) · n, while the optimum weight is O(ε−2) [47].

Online Steiner Spanners. An important variant of online spanners is when it is allowed to
use auxiliary points (Steiner points) which are not part of the input sequence of points, but
are present in the metric space. An online algorithm is allowed add Steiner points, however,
the spanner must achieve the given stretch factor only for the input point pairs. It has been
observed through a series of work in recent years, that Steiner points allow for substantial
improvements over the bounds on the sparsity and lightness of Euclidean spanners in the
offline settings . Highly nontrivial insights are required to argue the bounds for Steiner
spanners, and often they tend to be even more intricate than their non-Steiner counterpart;
see [12, 13, 47, 48]. Bhore and Tóth [14] showed that if an algorithm can use Steiner points,
then the competitive ratio for weight improves to O(ε(1−d)/2 log n) in the Euclidean d-space.

2 Upper Bounds in Euclidean Spaces

We present an online algorithm for a sequence of n points in the Euclidean d-space (Section 2.1).
It combines features from several previous approaches, and maintains a (1 + ε)-spanner of
lightness Od(ε−d log n) and sparsity Od(ε1−d log ε−1) for d ≥ 1. Lightness is an upper bound
for the competitive ratio for weight; the sparsity almost matching the optimal bound Od(ε1−d)
attained by ordered Yao-graphs. In the plane (d = 2), we show that the same algorithm
achieves competitive ratio O(ε−3/2 log ε−1 log n) using a tighter analysis: A charging scheme
that charges the weight of the online spanner to a minimum weight spanner (Section 2.2).

2.1 An Improvement in All Dimensions
We combine features from two incremental algorithms for geometric spanners, and obtain an
online (1 + ε)-spanner algorithm for a sequence of n points in Rd. We maintain a dynamic
quadtree for hierarchical clustering, and use a modified ordered Yao-graph in each level of
the hierarchy. In particular, we limit the weight of the edges in the Yao-graph in each level
of the hierarchy (thereby avoiding heavy edges). We start with an easy observation.
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▶ Lemma 1. Let G = (S, E) be a t-spanner and let w > 0. Let G′ = (S, E′), where
E′ = {e ∈ E : ∥e∥ ≤ w} is the set of edges of weight at most w. Then for every a, b ∈ S with
∥ab∥ < w/t, graph G′ contains an ab-path of weights at most t ∥ab∥.

Proof. Since G is a t-spanner, it contains an ab-path Pab of weight at most t ∥ab∥ ≤ w. By
the triangle inequality, every edge in this path has weight at most w, hence present in G′.
Consequently G′ contains Pab. ◀

The input is a sequence of points (s1, s2, . . .) in Rd, d ≥ 1. The set of the first n points
is denoted by Sn = {si : 1 ≤ i ≤ n}. For every n, we dynamically maintain a quadtree Tn

for Sn. Every node of Tn corresponds to a cube. The root of Tn, at level 0, corresponds
to a cube Q0 of side length a0 = Θ(diam(Sn)). At every level ℓ ≥ 0, there are at most
2dℓ interior-disjoint cubes, each of side length aℓ = a0 2−ℓ. A cube Q ∈ Tn is nonempty
if Q ∩ Sn ̸= ∅. For every nonempty cube Q, we maintain a representative s(Q) ∈ Q ∩ Sn,
selected at the time when Q becomes nonempty. At each level ℓ, let Pℓ be the sequence of
representatives, in the order in which they are created.

For each level ℓ, we maintain a modified ordered Yao-graph Gℓ = (Pℓ, Eℓ) as follows.
When a new point p is inserted into Pℓ, cover Rd with Θd(ε1−d) cones of aperture α(d, ε) as
in the construction of Yao-graphs. In each cone Ci, find a point qi ∈ Ci ∩ Pℓ closest to p; and
add pqi to Eℓ if ∥pqi∥ < 24aℓ

√
d · ε−1. The algorithm maintains the spanner G =

⋃
ℓ≥0 Gℓ.

▶ Theorem 2. Let d ≥ 1 and ε ∈ (0, 1). The online algorithm ALG1 maintains, for a sequence
of n points in Euclidean d-space, an (1 + O(ε))-spanner with weight Od(ε−d log n) · ∥MST∥
and Od(ε1−d log ε−1) · n edges.

Note that Theorem 2 implies that the competitive ratio of this algorithm is also Od(ε−d log n).

Proof.

Stretch Analysis. We give a bound on the stretch factor in two steps: First, we define
an auxiliary graph H = (S, E′) which is a (1 + ε)-spanner for S by the analysis of WSPDs.
Then we show that G contains an ab-path of weight at most (1 + ε)∥ab∥ for each edge of H.
Overall, the stretch of G is at most (1 + ε)2 = (1 + O(ε)) for all a, b ∈ S.

First Layer: WSPD. For each level ℓ ≥ 0, let Hℓ = (Pℓ, E′
ℓ) be the graph that contains an

edge between two representatives a, b ∈ Pℓ whenever ∥ab∥ ≤ 12aℓ

√
d · ε−1. Let H =

⋃
ℓ≥0 Hℓ.

The auxiliary graph Hℓ contains an edge between the representatives of any such pair of
cubes at level ℓ. As noted Section 1.2.2, H =

⋃
ℓ≥0 Hℓ is a (1 + ε)-spanner (cf. [41, 42]).

Second Layer: Near-Sighted Yao-graphs. As H is a (1 + ε)-spanner, for every a, b ∈ Sn,
it contains an ab-path of weight at most (1 + ε)∥ab∥. Consider such a path Pab = (a =
p0, . . . , pm = b). Each edge pi−1pi is in Hℓ for some ℓ ≥ 0. By construction, every edge in
Hℓ has weight at most 12aℓ

√
d · ε−1. For every level ℓ, the ordered Yao-graph Y (Pℓ) with

angle α(d, ε) is a (1 + ε)-spanner. The graph Gℓ = (Pℓ, Eℓ) constructed by ALG1 at level ℓ

is a subgraph of Y (Pℓ). By Lemma 1, for every p, q ∈ Pℓ with ∥pq∥ ≤ 12aℓ

√
d · ε−1, graph

Gℓ contains a pq-path of weight at most (1 + ε)∥pq∥.
Overall, H contains an ab-path Pab = (p0, . . . , pm) of weight at most (1 + ε)∥ab∥. For

each edge pi−1pi of Pab, graph G contains a pi−1pi-path of weight (1 + ε)∥pi−1pi∥. The
concatenation of these paths is an ab-path of weight (1 + ε)2∥ab∥ ≤ (1 + O(ε))∥ab∥.
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Weight Analysis. We may assume w.l.o.g. that the root of the quadtree Tn is the unit cube
[0, 1]d ⊂ Rd, which has diameter

√
d. This implies diam(Sn) ≤

√
d = Od(1). Assume further

that n > 1, and 1
4 ≤ diam(Sn) ≤ ∥MST (Sn)∥.

Every edge in Eℓ at level ℓ has weight Od(ε−1 2−ℓ). In particular, every edge at level
ℓ ≥ 2 log n has weight Od(ε−1/n2); and the total weight of these edges is Od(ε−1) ≤
Od(ε−1∥MST (Sn)∥).

It remains to bound the weight of the edges on levels ℓ = 1, . . . , ⌊2 log n⌋. At level ℓ of
the quadtree Tn, there are at most 2dℓ nodes, hence |Pℓ| ≤ 2dℓ. If |Pℓ| < 3d, then Gℓ has at
most O(32d) = Od(1) edges, each of weight at most diam(Pℓ) ≤ diam(Sn) ≤ ∥MST(Sn)∥,
and so ∥Eℓ∥ ≤ Od(∥MST(Sn)∥). Assume now that |Gℓ| ≥ 3d. By the definition of ordered
Yao-graphs, each vertex inserted into Pℓ adds Θ(ε1−d) new edges, each of weight O(ε−1 2−ℓ).
The total weight of the edges in Gℓ is at most

∥Eℓ∥ ≤ |Pℓ| · ε1−d · max
e∈Eℓ

∥e∥ ≤ Od(|Pℓ| ε−d 2−ℓ). (1)

We next derive a lower bound for ∥MST(Sn)∥ in terms of |Pℓ|, when |Pℓ| > 1 and ℓ > 2,
using a standard volume argument. Define a graph on the vertex set Pℓ such that two
nodes p, q ∈ Pℓ are adjacent iff p and q lie in neighboring quadtree cells of level ℓ. Since
every quadtree cell has 3d − 1 neighbors, this graph is (3d − 1)-degenerate, and contains
an independent set Iℓ of size at least (3d − 1)−1|Pℓ| = Ωd(|Pℓ|). The distance between any
two disjoint quadtreee cells at level ℓ is at least 2−ℓ. Consequently, the open balls of radius
2−(ℓ+1) centered at the points in Iℓ are pairwise disjoint. None of the balls contains Sn for
ℓ > 2, as the diameter of each of ball is 2−ℓ while diam(Sn) ≥ 1

4 . For all ℓ > 2, MST(Sn)
contains the center of each ball and a point in its exterior; hence the intersection of MST(Sn)
and each ball contains a path from the center to a boundary point, which has weight at least
2−(ℓ+1). Summation over |Iℓ| disjoint balls yields

∥MST (Sn)∥ ≥ |Iℓ| · 2−(ℓ+1) ≥ Ωd(|Pℓ| 2−ℓ). (2)

Comparing inequalities (1) and (2), we obtain ∥Eℓ∥ ≤ Od(ε−d) · ∥MST (Sn)∥. Summation
over all levels ℓ ∈ N yields ∥E∥ ≤ Od(ε−d log n) · ∥MST(Sn)∥, as claimed.

Sparsity Analysis. In the full paper, we show that G has O(ε1−d log ε−1) · n edges. ◀

2.2 Further Improvements in the Plane
We presents a tighter analysis of algorithm ALG1 for d = 2 that compares the spanner weight
to the offline optimum weight, and bypasses the comparison with the MST (i.e., lightness).

Minimum-Weight Euclidean (1 + ε)-Spanner. For any a, b ∈ Rd, an ab-path Pab of
Euclidean weight at most (1 + ε)∥ab∥ lies in the ellipsoid Eab with foci a and b and great
axes of weight (1 + ε)∥ab∥; see Figure 1. A key observation is that the minor axis of Eab is
((1 + ε)2 − 12)1/2 ∥ab∥ ≈

√
2ε ∥ab∥. Furthermore, Bhore and Tóth [13] recently observed that

the directions of “most” edges of the path Pab are “close” to the direction of ab. Specifically,
if we denote by E(α) the set of edges e in Pab with ∠(ab, e) ≤ α, then the following holds.

▶ Lemma 3 (Bhore and Tóth [13]). Let a, b ∈ Rd and let Pab be an ab-path of weight ∥Pab∥ ≤
(1 + ε)∥ab∥. Then for every i ∈ {1, . . . , ⌊1/

√
ε⌋}, we have ∥E(i ·

√
ε)∥ ≥ (1 − 2/i2) ∥ab∥.

Let R(a, b) = Eab ∩ N (a, b), where N (a, b) is the annulus bounded by two concentric
spheres centered at a, of radii 1+ε

2 ∥ab∥ and ∥ab∥; see Figure 1 for an example.
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c

o
a b

d

R(a, b)

Figure 1 Any ab-path of weight at most (1 + ε)∥ab∥ lies in the ellipse Eab with foci a and b. The
shaded region R(a, b) is the part of the ellipse Eab between two concentric circles centered at a.

▶ Lemma 4. If 0 < ε < 1
9 , then every ab-path Pab of weight at most ∥Pab∥ ≤ (1 + ε)∥ab∥

contains interior-disjoint line segments s ⊂ R(a, b) of total weight at least 1
9 ∥ab∥ such that

∠(
−→
ab, s) ≤ 3 ·

√
ε.

Proof. Since the distance between the two concentric circles is 1−ε
2 ∥ab∥, every ab-path

contains a subpath of weight at least 1−ε
2 ∥ab∥ in the annulus N (a, b).

Let Pab be an ab-path of weight at most (1 + ε)∥ab∥. As noted above Pab ⊂ Eab.
Hence, ∥Pab ∩ N (a, b)∥ = ∥Pab ∩ R(a, b)∥ ≥ 1−ε

2 ∥ab∥ in R(ab); and so ∥Pab \ R(a, b)∥ =
∥Pab∥ − ∥Pab ∩ R(a, b)∥ ≤ 1+3ε

2 ∥ab∥.
Applying Lemma 3 with i = 3, the total weight of the edges e of Pab with dir(ab, e) ≤ 3·

√
ε

is at least 7
9 ∥ab∥. The parts of these edges lying outside of R(a, b) have weight at most

∥Pab \ R(a, b)∥ ≤ 1+3ε
2 ∥ab∥. Consequently, the remaining part of these edges are in R(a, b),

and their weight is at least
( 7

9 − 1+3ε
2

)
∥ab∥ = 5−27ε

18 ∥ab∥ > 1
9 ∥ab∥ if ε < 1

9 , as claimed ◀

We also need an observation from elementary geometry; see Figure 1.

▶ Lemma 5. For a, b ∈ Rd, let cd be the minor axis of the ellipsoid Eab. Then ∠cad ≤
√

8ε.

Proof. We may assume w.l.o.g. that ∥ab∥ = 1. Let o be the center of the ellipsoid Eab. Then
sec∠cao = (cos∠cao)−1 = ∥ac∥

∥ao∥ = 1+ε. The Taylor estimate sec(x) = 1+ 1
2 x2 + 5

24 x4 + . . . ≥
1 + 1

2 x2 for 0 < x < 1 yields ∠cao ≤
√

2ε. Consequently, ∠cad = 2∠cao ≥
√

8 ε. ◀

▶ Theorem 6. Let d = 2 and ε ∈ (0, 1). The online algorithm ALG1 maintains, for a sequence
of n points in Euclidean plane, an (1 + ε)-spanner of weight O(ε−3/2 log ε−1 log n) · OPT,
where OPT denotes the minimum weight of an (1 + ε)-spanner for the same point set.

Proof. Theorem 2 has established that algorithm ALG1 maintains a (1 + ε)-spanner. The
tighter competitive analysis uses Lemmas 4 and 5.

Competitive Analysis. Assume w.l.o.g. that diam(Sn) = Θ(1), hence the side length of every
quadtree square at level ℓ is Θ(2−ℓ). For a set Sn = {s1, . . . , sn} ⊂ R2, let G∗ = (Sn, E∗)
be a (1 + ε)-spanner of minimum weight, and let OPT = ∥G∗∥. Let G = (Sn, E) be the
spanner returned by the online algorithm ALG1. Recall that G =

⋃
ℓ≥0 Gℓ, where the total

weight of all edges at levels ℓ > 2 log n is less than diam(Sn), so it is enough to consider
ℓ = 0, . . . , ⌈2 log n⌉.

▷ Claim 7. ∥Gℓ∥ ≤ O(ε−3/2 log ε−1) · OPT for all ℓ ≥ 0.

Claim 7 immediately implies ∥G∥ ≤ O(ε−3/2 log ε−1 log n) · OPT. For every level ℓ ≥ 0,
Gℓ = (Pℓ, Eℓ) is a graph on the representatives Pℓ. Note that G∗ is a Steiner spanner with
respect to the point set Pℓ, as G∗ is a spanner on all n points of the input.

We prove Claim 7 using a charging scheme: We charge the weight of every edge in Gℓ

to G∗ (more precisely, to line segments along the edges of G∗), and then show that each
line segment of weight w in G∗ receives O(ε−3/2 log ε−1) · w charge. For every point p ∈ Pℓ,
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algorithm ALG1 greedily covers R2 by Θ(ε−1) cones of aperture π/k = Θ(ε−1) and apex p,
and adds an edge pqi in each nonempty cone Ci. For the competitive analysis, we greedily
cover R2 by Θ(ε−1/2) cones of aperture

√
ε and apex p. We use translates of the same cone

cover for all p ∈ Pℓ. Standard volume argument implies that a cone of aperture
√

ε intersects
O(ε−1/2) cones of aperture Θ(ε−1). We describe the charging scheme for each such cone Ĉ.

Charging Scheme. Consider a cone Ĉ with apex p and aperture
√

ε. Let E(Ĉ) be the set of
edges pq, q ∈ Ĉ that algorithm ALG1 adds to Gℓ when p is inserted into Pℓ. Since Ĉ intersects
O(ε−1/2) cones of the ordered Yao-graph, then |E(Ĉ)| ≤ O(ε−1/2). By construction, every
edge in Gℓ has weight at most O(ε−12−ℓ). Hence

∥E(Ĉ)∥ =
∑

pq∈E(Ĉ)

∥pq∥ ≤ |E(Ĉ)| · O(ε−12−ℓ) ≤ O(ε−3/22−ℓ). (3)

Let q0 = q0(Ĉ) be a closest point in Pℓ ∩ Ĉ to p. (Possibly, q0 arrived after p.) We
distinguish between two cases:

Case 1: ∥pq0∥ < 2 · 2−ℓ. Since q0 ∈ Pℓ, and Pℓ contains at most one point in each
quadtree cell of side length Θ(2−ℓ), this case occurs at most O(1) times per apex p. On
the one hand, the summation of (3) over all p ∈ Pℓ and all cones Ĉ with ∥pq0∥ < 2 · 2−ℓ is
bounded by O(|Pℓ| · ε−3/22−ℓ). On the other hand, OPT ≥ Ω(∥MST(Pℓ)∥) ≥ Ω(|Pℓ| · 2−ℓ).
Consequently, the total weight of all edges handled in Case 1 is O(ε−3/2) OPT.

Case 2: ∥pq0∥ ≥ 2 · 2−ℓ. The optimal spanner G∗ contains a pq0-path P0 of weight at
most (1 + ε)∥pq0∥. Recall P0 lies in the ellipse E0 with foci p and q0, and R(p, q0) is the
half of E0 that contains q0 (cf. Figure 1). Let E∗(Ĉ) be the set of maximal line segments e

along edges in E∗ such that e ⊂ P0 ∩ R(p, q0) and ∠(e, pq0) ≤ 3 ·
√

ε. By Lemma 4, we have
∥E∗(Ĉ)∥ ≥ 1

9 ∥pq0∥. We distribute the weight of all edges in E(Ĉ) uniformly among the line
segments in E∗(Ĉ). That is, each segment of weight w in E∗(Ĉ) receives a charge of

∥E(Ĉ)∥
∥E∗(Ĉ)∥

· w ≤ O(ε−3/22−ℓ)
Ω(2−ℓ) · w ≤ O(ε−3/2) · w. (4)

This completes the description of the charging scheme in Case 2.

Charges Received. A point along an edge of the optimal spanner G∗ may receive charges
from several cones Ĉ, possibly with different apices p ∈ Pℓ. Let L be a maximal line segment
along an edge of G∗ such that every point in L receives the same charges.

For a cone Ĉ of aperture
√

ε, let K̂ denote a cone with the same apex and axis as Ĉ, but
aperture 3

√
ε; refer to Figure 2.

▷ Claim 8. If L receives charges from Ĉ, then L ⊂ K̂.

Indeed, if L receive charges from Ĉ, then L ⊂ R(p, q0) ⊂ E0, where E0 is the ellipse with
foci p and the closest point q0 ∈ Ĉ ∩ Pℓ. By Lemma 5, R(p, q0) lies in a cone with apex p,
aperture 2

√
ε, and axis pq0. Consequently L ⊂ R(p, q0) ⊂ K̂, which proves Claim 8.

Note that if L receives positive charge from a cone Ĉ with apex p and closest point q0,
then ∠(L, pq0) ≤ 3 ·

√
ε. Since the aperture of the cones Ĉ is

√
ε, then L receives charges

from cones Ĉ with at most O(1) different orientations. We may restrict ourselves to cones Ĉ

that are translates of each other (but have different apices in Pℓ).
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R(a, b)

√
ε

Ĉ1
p

Ĉ2

Ĉ0

q0

p

K̂1

√
ε

√
ε

q0

Ĉ1

Ĉ2

Ĉ0

Figure 2 Left: There consecutive cones, Ĉ0, Ĉ1, and Ĉ1, with apex p and aperture
√

ε. Point q0

is the closest to p in Pℓ ∩ Ĉ1; and R(p, q0) ⊂ K̂1 = Ĉ0 ∪ Ĉ1 ∪ Ĉ2. Right: No point in Pℓ is in the
blue sector K̂, but there may be points in the pink sectors.

Let A be the set of all translates of a cone Ĉ with aperture
√

ε and apices in Pℓ, and
L receives positive charge from Ĉ. We partition A into O(log ε−1) classes as follows. For
j = 1, . . . , ⌈log(2ε−1)⌉, let Aj be the set of cones Ĉ ∈ A such that 2j−ℓ ≤ ∥pq0∥ < 2j+1−ℓ,
where p ∈ Pℓ is the apex of Ĉ and q0 is the closest point in Pℓ ∩ Ĉ to p.

▷ Claim 9. For each j, segment L receives O(ε−3/2) ∥L∥ total charges from all cones in Aj .

For a cone Ĉ ∈ Aj , the bound (3) is replaced by

∥E(Ĉ)∥ =
∑

pq∈E(Ĉ)

∥pq∥ ≤ |E(Ĉ)| · O(2j−ℓ) ≤ O(ε−1/22j−ℓ), (5)

while ∥E∗(Ĉ)∥ ≥ 1
9 ∥pq0∥ ≥ Ω(2j−ℓ) by Lemma 4. Refining (4), L receives a charge

∥E(Ĉ)∥
∥E∗(Ĉ)∥

· ∥L∥ ≤ O(ε−1/22j−ℓ)
Ω(2j−ℓ) · ∥L∥ ≤ O(ε−1/2) · ∥L∥ (6)

from each cone in Aj . To prove Claim 9, it is enough to show that |Aj | ≤ O(2j) ≤ O(ε−1).

h−

h−

L

p1

p2

p2

p4

Ĉ1

Ĉ4

U

Figure 3 The union U of triangles Ĉ ∩ h−, where L receives charges from the cones Ĉ.

By Claim 8, L received charges from cones of O(1) different orientations. We consider
each orientation separately. We may assume w.l.o.g. that the symmetry axis of every cone in
Aj is parallel to the x-axis, and their apex is their leftmost point. Let h be a vertical line that
contains the left endpoint of L, and let h− be the left halfplane bounded by h; see Figure 3.
The intersections Ĉ ∩ h and K̂ ∩ h are vertical line segments of length O(2j−ℓ tan

√
ε). We

have L ∩ h ⊂ K̂ ∩ h by Claim 8; and obviously Ĉ ∩ h ⊂ K̂ ∩ h. Consequently, a vertical line
segment of length O(2j−ℓ tan

√
ε) contains h ∩ Ĉ for all Ĉ ∈ Aj .
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Let U be the union of the triangles Ĉ ∩ h− for all Ĉ ∈ Aj . The interior of Ĉ ∩ h−

does not contain any point in Pℓ. Consequently, the apices of all cones lie on the boundary
∂U of U . The part of ∂U in h− is a y-monotone curve with slopes ±

√
ε. It follows that

the length of ∂U is O(2j−ℓ tan
√

ε/ sin
√

ε) = O(2j−ℓ csc
√

ε) = O(2j−ℓ). This, in turn,
implies that ∂U intersects O(2j) cubes of side length a02−ℓ at level ℓ of the quadtree, and so
|Aj | ≤ O(2j) ≤ O(ε−1), as required. This completes the proof Claim 9, and hence the proof
of Theorem 6. ◀

3 Lower Bounds in Rd Under the L1 Norm

In this section we introduce a strategy based on the points on the integer lattice Zd, that
achieves a new lower bound for the competitive ratio of an online (1 + ε)-spanner algorithm
in Rd under the L1 norm.

Figure 4 A sketch of the construction for the lower bound in two dimensions. Any online
algorithm is required to add the red pairs.

Construction. We describe an adversary strategy with Ωd(ε−d) points and show that any
online algorithm returns a (1+ε)-spanner whose weight is Ωd(ε−d) times the optimum weight.
One can extend this result for arbitrary number of points, but that does not necessarily
improve the lower bound. The final point set X consists of the points of the integer lattice Zd

in the hypercube [0, 1
εd )d, where ε < 1

d . The points are presented in stages in order to deceive
the online algorithm to add more edges than needed. In step 2i, where 0 ≤ i < 1

2ε , points
x ∈ X such that ∥x∥1 = i will be given to the algorithm. In step 2i + 1, where 0 ≤ i < 1

2ε ,
the adversary presents points x ∈ X such that ∥x∥1 = ⌈1/ε⌉ − i (Figure 4). In other words,
points are presented in batches according to their L1 norms.

Competitive Ratio. Denote by Xi the set of points presented in step i. The idea is to show
that there has to exist many edges between Xi and Xi+1 in order to guarantee the 1 + ε

stretch-factor. Specifically, we define an ordered-pair as follows.

▶ Definition 10 (ordered-pair). A pair of points (x, y) in Rd is an ordered-pair if x ∈ X2i

and y ∈ X2i+1 for some i, and xk ≤ yk for all k, where xk and yk are the k-th coordinates
of x and y respectively.
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Now we show that any ordered-pair (x, y) ∈ X2i × X2i+1 requires an edge in the spanner
immediately after x and y are presented. To prove this, we show (in the full paper) that
previously presented points cannot serve as via points in a (1 + ε)-path between x and y.

▶ Lemma 11. Let (x, y) be an ordered-pair. Then there is no (1 + ε)-path between x and y

that goes through any other point z ∈ Xj with j ≤ i + 1.

We next show that the total weight of the edges between ordered pairs is Ωd(ε−2d).

▶ Lemma 12. The total weight of the edges between the ordered-pairs is Ωd(ε−2d).

Proof. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be two points in X. We show that if
xk ∈ [ 1

4ε(d+0.25) , 1
4εd ] for all 1 ≤ k ≤ d, and yk ∈ [ 3

4ε(d+0.25) , 3
4εd ] for all 1 ≤ k ≤ d − 1, then

there is a choice of yd that makes (x, y) an ordered-pair. This would imply that there are
Ωd(ε−2d+1) ordered-pairs and by Lemma 11, each pair requires an edge of weight Ωd(ε−1),
thus the total weight of required edges would be Ωd(ε−2d).

In order to find such a yd, recall that ∥x∥1 + ∥y∥1 = ⌈ε−1⌉ holds because (x, y) is an
ordered-pair. This equality uniquely determines the value of yd,

yd = ⌈ε−1⌉ −
d∑

k=1
xk −

d−1∑
k=1

yk.

We just need to prove the inequalities yk ≥ xk and yk ≤ 1/(εd) for this unique yk. This can
simply be done by plugging the maximum (and minimum) values of xks and other yks and
calculating the result,

yd ≥ 1
ε

− d

4εd
− 3(d − 1)

4εd
= 3

4εd
> xd.

Also,

yd ≤ 1
ε

+ 1 − d

4ε(d + 0.25) − 3(d − 1)
4ε(d + 0.25) = 1 + 1

ε(d + 0.25) <
1
εd

. ◀

Now we can prove the main theorem of this section.

▶ Theorem 13. The competitive ratio of any online (1 + ε)-spanner algorithm in Rd under
the L1-norm is Ωd(ε−d).

Proof. For the point set X ⊂ Rd, the unit-distance graph is a Manhattan network: It
contains a path of weight ∥xy∥1 for all x, y ∈ X. Its weight is Θd(ε−d) which is an upper
bound for the weight of a (1 + ε)-spanner for any ε ≥ 1. By Lemma 12, any online algorithm
returns a spanner of weight Ωd(ε−2d). Thus its competitive ratio is Ωd(ε−d). ◀

4 General Metrics: The Ordered Greedy Spanner

In this section we study the online spanners problem on general metric spaces. The points
arrive one by one, where for each new point we also receive its distances to all previously
introduced points.

In the offline setting, the celebrated greedy spanner algorithm [4] sorts the edges by
increasing weight, and then processes them one by one, adding each edge if by the time
of examination, the distance between its endpoints is too large. This algorithm achieves
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the existentially optimal2 sparsity and lightness as a function of the stretch factor [31].
However, in the online model, we do not receive the edges in a sorted order, and therefore
cannot execute the greedy algorithm. As an alternative, we propose here the ordered greedy
algorithm. This is a deterministic algorithm working against an adaptive adversary. The
algorithm receives a stretch factor t, and works naturally as follows: We maintain a spanner
H. When a point vi arrives, we order its edges3 in the original metric by weight. Each edge
{vi′ , vi} is added to the spanner H if currently δH(vi′ , vi) > t · δX(vi′ , vi). Note that this
algorithm can be easily executed in an online fashion.

▶ Theorem 14. Given an n-point metric space (X, δX) in an (adaptive) adversarial order,
with stretch factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1), the ordered greedy algorithm
returns a spanner with O(ε−1 log ε−1) · n1+ 1

k edges and weight O(ε−1n
1
k log2 n) · w(MST).

Proof. The bounded stretch of our spanner is straightforward by construction, as every pair
was examined at some point, and taken care of. Next we analyze the lightness.

In the online spanning tree problem, points of a finite metric space arrive one-by-one,
and we need to connect each new point to a previous point to maintain a spanning tree. The
ordered greedy algorithm connects each vertex vi, to the closest vertex in {v1, . . . , vi−1}. As
was shown by Imase and Waxman [44], the tree created by the ordered greedy algorithm
has lightness O(log n), which is the best possible [44]. Denote the online spanning tree by
TG. Note that the ordered greedy spanner H will contain TG, as a shortest edge between
a new vertex to a previously introduced vertex is always added to the spanner H. The
following clustering lemma is frequently used for spanner constructions (see e.g. [3, 22, 27]).
We provide a proof for the sake of completeness.

▷ Claim 15. For every i ∈ N, the point set X can be partitioned into clusters Ci of diameter
at most Di = ε · (1 + ε)i w.r.t. the metric δTG

such that |Ci| = O( w(TG)
ε·(1+ε)i ).

Proof. Let Ni be a maximal set of vertices such that for every x, y ∈ Ni, δTG
(x, y) > 1

2 · Di.
For every vertex x ∈ Ni let Cx =

{
z : x = argminy∈Ni

δX(z, y)
}

be the Voronoi cell of x.
Clearly, diam(Cx) ≤ Di for all x. Further, consider a continuous version of TG (where each
edge is an interval). Then as the graph TG is connected, each cluster Cx contains at least
1
4 Di length of edges (as the balls

{
BTG

(x, 1
4 Di)

}
x∈Ni

are pairwise disjoint). It follows that

|Ci| = |Ni| ≤ w(TG)
1
4 Di

= O

(
w(TG)

ε · (1 + ε)i

)
. ◁

For every i, consider the scale Ei =
{

e = {u, v} ∈ H : (1 + ε)i−1 ≤ δX(u, v) < (1 + ε)i
}

. We
are now ready to bound the lightness and the sparsity of the ordered greedy spanner. This is
accomplished in the next two claims, with proofs in the full paper.

▷ Claim 16. The weight of the ordered greedy spanner is O(n 1
k · ε−2 log2 n) · w(MST).

▷ Claim 17. The ordered greedy spanner has O(ε−1 log 1
ε ) · n1+ 1

k edges.

This completes the proof of Theorem 14. ◀

2 Specifically, if a t-spanner construction achieves an upper bound m(n, t) and l(n, t), resp., on the size
and lightness of an n-vertex graph then this bound also holds for the greedy t-spanner [31].

3 By edges we mean point pairs in the metric space, we will often use notation from graph theory.
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5 Lower Bound for General Metrics

In this section we prove an Ω( 1
k · n

1
k ) lower bound on the competitive ratio of an online

(2k − 1)-spanner of n-vertex graphs. Our lower bound holds in both cases where the
quality is measured by number of edges or the weight. It follows that our upper bound in
Theorem 14 cannot be substantially improved, even if we consider competitive ratio instead
of lightness/sparsity.

Recall that the Erdős Girth Conjecture [28] states that for every n, k ≥ 1, there exists an
n-vertex graph with Ω(n1+ 1

k ) edges and girth 2k + 2. The proof of the following lemma is
based on a counting argument form the recent lower bound proof for (static) vertex fault
tolerant emulators by Bodwin, Dinitz, and Nazari [15].

▶ Lemma 18. Assuming the Erdős girth conjecture, for every n, k ≥ 1, there exists an
n-point metric space (X, δX) with diameter 2k − 1, such that every (2k − 1)-spanner has
Ω( 1

k · n1+ 1
k ) edges and weight Ω(n1+ 1

k ).

Proof. Let G = (V, EG) be the graph fulfilling the Erdős girth conjecture. That is, G is an
unweighted n-vertex graph with girth 2k + 2 and |EG| = Ω(n1+ 1

k ) edges. Set a metric δX

over V as follows,4

∀u, v ∈ V δX(u, v) = min {δG(u, v), 2k − 1} .

Suppose that H = (V, EH) is a (2k − 1)-spanner for (V, δX) with weight function wH , where
the weight of an edge e′ ∈ {u, v} ∈ EH is wH(e′) = δX(u, v). Let E′ = EH \ EG be the edges
of H which are not in G. We say that an edge e′ ∈ E′ covers an edge e ∈ EG, if there is a
shortest path in G between the endpoints of e′ going through e of weight at most k. Note
that as e′ has weight at most k, there is a unique shortest path in G between its endpoints.
In particular, each edge e ∈ E′ can cover at most k edges in EG.

Consider an edge e = {v0, vs} ∈ EG \ EH . We argue that some edge e′ ∈ E′ must cover
e. Suppose for contradiction otherwise, and let P = (v0, v1, . . . , vs) be the shortest path
in H between the endpoints v0, vs of e. Suppose first that P contains an edge vi, vi+1 of
weight at least wH({vi, vi+1}) ≥ k + 1. In particular, δG({vi, vi+1}) ≥ k + 1. Then by the
triangle inequality, δG(v0, vi) + δG(vi+1, vs) ≥ δG(vi, vi+1) − δG(v0, vs) ≥ k. It follows that
P has weight at least 2k + 1, a contradiction to the fact that H is a 2k − 1 spanner. We
conclude that for every i ∈ {0, . . . , s − 1}, δX(vi, vi+1) = δG(vi, vi+1) ≤ k. In particular, in
G there is a unique path Pi = (ui

0, . . . , ui
si

) between vi to vi+1 of weight δG(vi, vi+1) ≤ k. As
no edge covers e, e does not belong to any of these paths. The concatenation of this paths
P0 ◦ P1 ◦ · · · ◦ Ps−1 is a path in G of at most 2k − 1 edges between the endpoints of e. It
follows that G contains a 2k-cycle, a contradiction.

For conclusion, as every edge in EG \ EH is covered, and every edge in E′ = EH \ EG

can cover at most k edges, it follows that |EH \ EG| ≥ 1
k · |EG \ EH |. In particular,

|EH | = |EH ∩ EG| + |EH \ EG| ≥ |EH ∩ EG| + 1
k

· |EG \ EH | ≥ 1
k

· |EG| .

To bound the weight, for each edge e′ = {s, t} ∈ E′, let Ae′ be the set of edges in EG covered
by e′. Note that wH(e′) = δG(s, t) = |Ae′ |. As all the edges in EG \ EH are covered, we
conclude

4 Note that ∀x, y, z ∈ V , δX(x, z) = min {δG(x, z), 2k − 1} ≤ min {δG(x, y) + δG(y, z), 2k − 1} ≤
min {δG(x, y), 2k − 1} + min {δG(y, z), 2k − 1} = δX(x, y) + δX(y, z). Thus δX is a metric space.
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wH(EH) = wH(EH ∩ EG) + wH(EH \ EG)

= |EH ∩ EG| +
∑

e′∈E′

|Ae′ |

≥ |EH ∩ EG| + |EG \ EH | = |EG| = Ω(n1+ 1
k ). ◀

▶ Theorem 19. Assuming Erdős girth conjecture, the competitive ratio of any online (2k −1)-
spanner algorithm for n-point metrics is Ω( 1

k · n
1
k ), for both weight and number of edges.

In more details, there is an n-point metric space (X, δX) with a (2k − 1)-spanner HOPT =
(X, EOPT), and order over X for which every (2k−1)-spanner produced by an online algorithm
will have Ω( 1

k · n
1
k ) · |EOPT| edges, and Ω( 1

k · n
1
k ) · w(HOPT) weight.

Proof. Consider the metric space (X, δX) from Lemma 18 with parameters n − 1 and k. Let
X ′ be the metric space X with an additional point r at distance 2k−1

2 from all the points in
X. Note that no pairwise distance is changed due to the introduction of r. The adversary
provides the online algorithm the points in X first (in some arbitrary order), and the point
r last. After the algorithm received all the points in X ′, it has a 2k − 1-spanner Hn−1.
According to Lemma 18, Hn−1 has Ω( 1

k · (n − 1)1+ 1
k ) = Ω( 1

k · n1+ 1
k ) edges, and Ω(n1+ 1

k )
weight.

Next the algorithm introduces r. Consider the spanner S = (X ′, ES) consisting of n − 1
edges with r as a center. Note that the maximum distance in S is 2k − 1, and hence S is a
2k − 1 spanner as required. Note that S contains n − 1 edges of weight 2k−1

2 each, and thus
have total weight of O(nk). We conclude

|EHn | ≥ |EHn−1 | = Ω( 1
k · n1+ 1

k ) = Ω( 1
k · n

1
k ) · |ES | .

w(EHn
) ≥ w(EHn−1) = Ω(n1+ 1

k ) = Ω( 1
k · n

1
k ) · w(S) .

◀

6 Conclusion

We studied online spanners for points in metric spaces. In the Euclidean d-space, we presented
an online (1 + ε)-spanner algorithm with competitive ratio O(ε1−d log n), improving the
previous bound of Od(ε−(d+1) log n) from [14]. In fact, the spanner maintained by the
algorithm has Od(ε1−d log ε−1) · n edges, almost matching the (offline) optimal bound of
Od(ε1−d) · n. Moreover, in the plane, a tighter analysis of the same algorithm provides
an almost quadratic improvement of the competitive ratio to O(ε−3/2 log ε−1 log n), by
comparing the online spanner with an instance-optimal spanner directly, circumventing the
comparison to an MST (i.e., lightness). Note that, the logarithmic dependence on n is
unavoidable due to a Ω((ε−1/ log ε−1) log n) lower bound in the real line [14]. However, our
lower bound Ω(ε−d) under the L1-norm in Rd shows a dependence on the dimension. This
leads to the following question.

▶ Question. Does the competitive ratio of an online (1 + ε)-spanning algorithm for n points
in Rd necessarily grow proportionally with ε−f(d) · log n, where limd→∞ f(d) = ∞?

Interestingly, for t ∈ [(1 + ε)
√

2, (1 − ε)2], we can show that every online t-spanner
algorithm in Rd must have competitive ratio 2Ω(ε2d) (see the full paper for further details).

Next, we studied online spanners in general metrics. We showed that the ordered greedy
algorithm maintains a spanner with O(ε−1 log ε−1)·n1+ 1

k edges and O(ε−1n
1
k log2 n) lightness,

with stretch factor t = (2k − 1)(1 + ε) for k ≥ 2 and ε ∈ (0, 1), for a sequence of n points in
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a metric space. Moreover, we show that these bounds cannot be significantly improved, by
introducing an instance that achieves an Ω( 1

k · n1/k) competitive ratio on both sparsity and
lightness. Finally, we established the trade-off among stretch, number of edges and lightness
for points in ultrametrics, showing that one can maintain a (2 + ε)-spanner for ultrametrics
with O(ε−1 log ε−1) · n edges and O(ε−2) lightness.
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