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Abstract
Low-distortional metric embeddings are a crucial component in the modern algorithmic toolkit. In an online

metric embedding, points arrive sequentially and the goal is to embed them into a simple space irrevocably,
while minimizing the distortion. Our first result is a deterministic online embedding of a general metric
into Euclidean space with distortion O(logn) ⋅min{

√

logΦ,
√
n} (or, O(d) ⋅min{

√

logΦ,
√
n} if the metric has

doubling dimension d), solving affirmatively a conjecture by Newman and Rabinovich (2020), and quadratically
improving the dependence on the aspect ratio Φ from Indyk et al. (2010). Our second result is a stochastic
embedding of a metric space into trees with expected distortion O(d⋅logΦ), generalizing previous results (Indyk
et al. (2010), Bartal et al. (2020)).

Next, we study the problem of online minimum-weight perfect matching (MWPM). Here a sequence of 2n points
s1, . . . s2n in a metric space arrive in pairs, and one has to maintain a perfect matching on the first 2i points
Si = {s1, . . . s2i}. We allow recourse (as otherwise the order of arrival determines the matching). The goal is
to return a perfect matching that approximates the minimum-weight perfect matching on Si, while minimizing
the recourse. Online matchings are among the most studied online problems, however, there is no previous
work on online MWPM. One potential reason for this is that online MWPM is drastically non-monotone, which
makes online optimization highly challenging. Our third result is a randomized algorithm with competitive ratio
O(d ⋅ logΦ) and recourse O(logΦ) against an oblivious adversary, this result is obtained via our new stochastic
online embedding. Our fourth result is a deterministic algorithm that works against an adaptive adversary,
using O(log2 n) recourse, and maintains a matching of total weight at most O(logn) times the weight of the
MST, i.e., a matching of lightness O(logn). We complement our upper bounds with a strategy for an oblivious
adversary that, with recourse r, establishes a lower bound of Ω( logn

r log r
) for both competitive ratio as well as

lightness.

1 Introduction
The traditional model of algorithms design solves problems where the entire input is given in advance. In
contrast, online algorithms work under conditions of uncertainty, gradually receiving an input sequence σ =
σ1, σ2, . . . , σn (where σi is presented at step i). The algorithm has to serve them in the order of occurrence, where
the decisions are irrevocable, and without prior knowledge of subsequent terms of the input. The objective
is to optimize the total cost paid on the entire sequence σ. The performance of an online algorithm ALG is
measured using competitive analysis, where ALG is compared to an optimal offline algorithm that knows the
entire sequence in advance and can provide the solution with optimum cost [BE98, Ch. 1]. The two most central
adversarial models in online algorithms are adaptive and oblivious. In the adaptive adversary model, the sequence
of arriving points is determined “on the fly”, and may depend on the previous decisions made by the algorithm.
This is a restrictive model, and in particular, randomization is not helpful in this model. An algorithm is k-
competitive against an adaptive adversary if, for every sequence σ of requests, the cost of the algorithm is at most
k times the optimal offline solution.1 An oblivious adversary assumes that the input sequence is determined
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1This paper is focused on minimization problems. In a maximization problem, an algorithm is k-competitive if for every sequence σ, the
cost of the algorithm is at least a k fraction of the optimal offline solution.
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(a)

(b)

2 23 3 44 5 5n+ 1 n+ 1 n+ 2n+ 2 n+ 3 n+ 3 n+ 4n+ 4 n+ 5 n+ 5

Figure 1: (a) Example where the weight of an online matching is arbitrarily far form optimum assuming
irrevocable decisions (i.e., no recourse). The metric is the real line. We first receive the pairs {i,W + i}ni=1, and
then the pairs {i+ ε,W + i+ ε}ni=1, for sufficiently small ε and large W . The weight of the online perfect matching
(specified in the illustration) is 2n ⋅W , while the cost of the optimal perfect matching is 2ε ⋅ n.
(b) Example of the drastic non-monotonicity of minimum-weight perfect matching. The metric is the real line,
where each point {1,2 . . . ,2n} appears twice, while the points {0,2n + 1} appear once. Then the weight of a
perfect matching is 2n + 1. After introducing the pair {0,2n + 1} (red in the figure), the weight of the perfect
matching drops to 0.

in advance (however, unknown to the algorithm). Here randomization can be useful. A randomized online
algorithm is k-competitive against an oblivious adversary if, for every sequence σ of requests, the expected cost of
the algorithm is at most k times the optimal offline solution.1

Online problems arise in various areas of computer science, such as scheduling, network optimization,
data structures, resource management in operating systems, etc.; see [BN09, KVV90, Alb03, BFK+17]. Some
preeminent examples of online problems are k-server [BCR23], job scheduling [LLMV20], routing [AAF+97],
load balancing [Aza05], among many others.

One of the most fundamental and well-studied problems in the online algorithms world is online matching.
Starting with the seminal paper by Karp, Vazirani, and Vazirani [KVV90], a large body of work on “online
matchings” is devoted to the online maximum bipartite matching (server-client model) problem, where one side of the
bipartite graph (servers) is fixed and the vertices of the other side (clients) are revealed one at a time: The objective
is to maintain a maximum matching (not necessarily a perfect matching). Since then, numerous variants of this
problem have been studied, see e.g. [AS22, BN09, DH09, GKM+19, GM08, KP98, MSVV07, SWW95].

Online Minimum-Weight Perfect Matching. In this paper, we study online minimum-weight perfect
matchings (MWPM) in metric spaces. Points s1, . . . s2n arrive sequentially from a metric space (X,dX) (unknown
in advance). For each new point si, we are given the distances to all previous points: {dX(si, sj)}i−1j=1. 2 Denote
by Si = {s1, . . . , s2i} the set of the first 2i points. The goal is to maintain a perfect matching Mi on Si such that
the difference between Mi and Mi+1 is bounded by a constant or a polylogarithmic function of n, and the weight
of Mi is as small as possible.

A standard online algorithm can add edges to the matching, but the decisions are irrevocable, and therefore
no edge is ever deleted. In this setting, the matching is completely determined by the order of points:
M = {{s2i−1, s2i} ∶ i = 1, . . . , n}, and the weight of M may be arbitrarily far from the optimum (see an example in
Figure 1 (a)). For this reason, we allow recourse r: the online algorithm has to maintain a perfect matching on Si,
and in each step, it can delete up to r edges. Our primary focus is the trade-off between recourse and the weight
of the matching Mi.

Surprisingly, even though matchings are one of the most meticulously studied online problems, essentially
no previous results were known for the online minimum-weight perfect matching problem with recourse.3 Note
that the server-client model based online algorithms are significantly different from ours, and in general are not
helpful for our problem. One natural difficulty is that in contrast to other classical optimization problems, e.g.,
MST or TSP, the minimum weight of perfect matching is drastically non-monotone:4 it can decrease from a large
weight to 0 after introducing a single new pair! (See Figure 1 (b) for an illustration.) This non-monotonicity is

2Equivalently, there is an underlying complete weighted graph G = (V,E,w) with weight respecting triangle inequality. For each new
vertex, we receive the edges to all previously arrived vertices.

3The related problem of online minimum-weight perfect matching with delays [ACK17, DU23, EKW16] has been studied previously; see
Section 1.3.

4Due to the triangle inequality, the cost of an optimal TSP tour can only increase as new points arrive. The cost of an MST could decrease
after additional points arrive, but this could happen up to at most a factor of 2 (due to the fact that the MST is a 2 approximation of the
minimum Steiner tree).
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the major bottleneck for maintaining a good approximation with limited recourse. We further discuss related
classical online optimization problems in Section 1.3.

For online MST, for example, Gu et al. [GGK16] achieve a competitive ratio of 2O(k) with a single recourse
for every k new points (that is fractional recourse, on average). However, for MWPM we show (Proposition 1.1)
that there is no competitive online algorithm if we are allowed to use a single recourse per vertex pair, which
already holds for a sequence of 8 points on a real line, even if the sequence is known in advance. That is to say,
online MWPM is a much more challenging problem than online MST.

Online Metric Embeddings. Low-distortion metric embeddings are a crucial component in the modern
algorithmic toolkit with applications in approximation algorithms [LLR95], distributed algorithms [KKM+12],
online algorithms [BBMN15], and many more. A metric embedding is a map f ∶ X → Y between the points
of two metric spaces (X,dX) and (Y, dY ). The contraction and expansion of the map f are the smallest ρ, t ≥ 1,
respectively, such that for every pair x, y ∈X ,

ρ−1 ⋅ dX(x, y) ≤ dY (f(x), f(y)) ≤ t ⋅ dX(x, y) .

The distortion of the map is then ρ ⋅ t. The embedding is non-contractive (non-expansive) if ρ = 1 (t = 1).
Such an embedding is also called dominating. Arguably, in the TCS community, the two most celebrated metric
embeddings are the following: (1) every n-point metric space embeds into Euclidean space ℓ2 with distortion
O(logn) [Bou85], and (2) every n-point metric space stochastically embeds into a distribution over tree metrics
(in fact ultrametrics5) with expected distortion O(logn) [FRT04] (see also [Bar96, Bar98, Bar04]). Specifically,
there is a distribution D over pairs (f,U), where U is an ultrametric, and f ∶X → U is a dominating embedding,
such that for all x, y ∈X , we have E(f,U)∼D [dU(f(x), f(y)] ≤ O(logn) ⋅ dX(x, y).

While [Bou85, FRT04] enjoined tremendous success and have numerous applications, they require to know
the metric space (X,dX) in advance, and hence cannot be used in an online fashion where the points are revealed
one by one. In this paper, we first focus on online metric embeddings:

DEFINITION 1. (ONLINE EMBEDDING) An online embedding of a sequence of points x1, . . . , xk from a metric
space (X,dX) into a metric space (Y, dY ) is a sequence of embeddings f1, . . . , fk such that for every i, fi is a map
from {x1, . . . , xi} to Y , and fi+1 extends fi (i.e., fi(xj) = fi+1(xj) for j ≤ i). The embedding has expansion
α = maxi,j≤k

dY (fk(xi),fk(xj))
dX(xi,xj) , and contraction β = maxi,j≤k

dX(xi,xj)
dY (fk(xi),fk(xj)) . The distortion of the online embedding

is α ⋅ β. If β ≤ 1, we say that the embedding is dominating.
A stochastic online embedding is a distribution D over dominating online embeddings. A stochastic online

embedding D has expected distortion t if for every xi, xj , Efk∼D[dM(fk(xi), fk(xj))] ≤ t ⋅ dX(xi, xj). In an online
embedding algorithm, the embedding fi can depend only on {x1, . . . , xi}.

For stochastic online embeddings, the sequence of points should be fixed in advance (but unknown to
the algorithm). That is, a deterministic online embedding can be used against an adaptive adversary, while
stochastic online embedding can be used only against an oblivious adversary.

Indyk, Magen, Sidiropoulos, and Zouzias [IMSZ10] (see also [ERW10]) observed that Bartal’s original
embedding [Bar96] can be used in an online fashion to produce a stochastic embedding into trees (ultrametrics)
with expected distortion O(logn ⋅ logΦ), where Φ = maxx,y∈X dX(x,y)

minx,y∈X dX(x,y) is the aspect ratio (a.k.a. spread). Their original
embedding had the caveat that the number of metric points n and the aspect ratio Φ must be known in advance.
Later, Bartal, Fandina, and Umboh [BFU20] removed these restrictions. They also provided an Ω ( logn⋅logΦ

log logn
)

lower bound, showing this distortion to be tight up to second order terms. For the case where the input metric
space (X,dX) has doubling dimension6 ddim (known in advance), Indyk et al. [IMSZ10] constructed a stochastic
online embedding into ultrametrics with expected distortion 2O(ddim) ⋅ logΦ.

In an attempt to construct an online version of Bourgain’s embedding [Bou85], Indyk et al. [IMSZ10]
constructed online stochastic embedding of an arbitrary n-point metric space into the Euclidean space ℓ2
with expected distortion O(logn ⋅

√
logΦ) (again, n and Φ must be known in advance), or with expected

distortion 2O(ddim) ⋅ logΦ for the case where the metric space has doubling dimension ddim (known in advance).

5An ultrametric is a metric space with the strong triangle inequality: ∀x, y, z, dX(x, y) ≤ max{dX(x, z), dX(z, y)}. In particular,
ultrametric can be represented as the shortest path metric of a tree graph. See Defintion 2.

6A metric (X,d) has doubling dimension ddim if every ball of radius 2r can be covered by 2ddim balls of radius r.
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Online Minimum Perfect Matching Online Metric Embeddings

Embedding into
Euclidean space

Determinstic

MWPM
Oblivious Adversary

Adaptive
MWPM

Adversary

Stochastic Embedding
into HSTs

(Theorem 1.8)

(Theorem 1.3–1.4)

(Theorem 1.5–1.6)

(Theorem 1.1–1.2)

Figure 2: A “duet” between online metric embeddings and minimum-weight perfect matchings: a Venn diagram
of the relationship between the various results in this paper.

Newman and Rabinovich [NR20] showed that every deterministic embedding into ℓ2 must have distortion
Ω(min{√n,

√
logΦ}). They conjectured7 that a similar upper bound holds:

CONJECTURE 1. ([NR20]) Every sequence of n points in a metric space received in an online fashion can be
deterministically embedded into Euclidean space ℓ2 with distortion poly(n).

1.1 Our Results The results in this paper are twofold: We study both online minimum-weight perfect
matchings and online metric embeddings. The connections between them are illustrated in Figure 2. The proofs
of the lemmas and theorems in this extended abstract can be found in the full version of this paper (available on
arXiv).

1.1.1 Metric Embeddings Our results on online metric embeddings are summarized in Table 1. Our first result
is a deterministic online embedding with distortion O(ddim) ⋅min{

√
logΦ,

√
n} into Euclidean space ℓ2 where

the input metric has doubling dimension ddim. No prior knowledge (of any of n, Φ, and ddim) is required.
As every n-point metric space has doubling dimension O(logn), this result simultaneously: (1) proves the
conjecture by Newman and Rabinovich [NR20] (with an upper bound of O(√n logn) ); (2) matches the lower
bound up to second order terms; (3) exponentially improves the dependence on ddim compared to [IMSZ10]; (4)
quadratically improves the dependence on Φ; (5) gives a deterministic distortion guarantee instead of expected
distortion; and (6) removes the requirement to know ddim and Φ in advance. In fact, the quadratic improvement
in the dependence on Φ answers an open question in [IMSZ10] (see Remark 2 in [IMSZ10]).

THEOREM 1.1. For a sequence of metric points x1, . . . , xn arriving in an online fashion, there is a deterministic online
embedding into Euclidean space ℓ2 with distortion O(ddim) ⋅min{

√
logΦ,

√
n}. Here Φ is the aspect ratio, and ddim is

the doubling dimension of {x1, . . . , xn}. No prior knowledge is required.

Our second result is a lower bound showing that for constant doubling dimension, Theorem 1.1 is tight.
Our lower bound holds even for stochastic online embeddings with expected distortion guarantees. This
generalizes [NR20], where it was shown that there is a family of n-point metric spaces with aspect ratio Φ = 2Ω(n)
such that every deterministic embedding into ℓ2 requires distortion Ω(

√
logΦ) = Ω(√n) (however their family

does not have bounded doubling dimension).

THEOREM 1.2. For every n ∈ N, there is a family Mn of metric spaces with O(n) points, aspect ratio Φ = 4n,
and uniformly constant doubling dimension, where each metric (X,dX) ∈ Mn constitutes a shortest path metric of a
series parallel (in particular, planar) graph, such that every stochastic online embedding into ℓ2 has expected distortion
Ω(
√
logΦ) = Ω(√n).

7The conjecture appears in the full arXiv version (in the conference version, it is stated as an open problem).
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Input space Host Space Distortion Reference Deter? Pri.Kno.
1. General

ℓ2

O(logn ⋅
√
logΦ) [IMSZ10] n,Φ

2. General Ω(min{√n,
√
logΦ}) [NR20] yes

3. Doubling 2O(ddim) ⋅ logΦ [IMSZ10] ddim,Φ

4. Doubling O(ddim ⋅
√
logΦ) Theorem 1.1 yes none

5. Constant ddim Ω(
√
logΦ) Theorem 1.2

6. General

HST

(ultrametric)

O(logn ⋅ logΦ) [IMSZ10, BFU20] none
7. General Ω̃(logn ⋅ logΦ) [BFU20]
8. Doubling 2O(ddim) ⋅ logΦ [IMSZ10] ddim,Φ

9. Doubling O(ddim ⋅ logΦ) Theorem 1.3 none
10. (Rd, ∥ ⋅ ∥2) O(

√
d ⋅ logΦ) Theorem 1.4 none

11. R Ω(min{n, logΦ}) [IMSZ10]
12. General Tree 2n−1 [NR20] yes none
13. General Ω(2n

2 ) [NR20] yes

Table 1: Summary of new and previous result on online metric embeddings. Doubling stands for metric space
with doubling dimension ddim. The column “Deter?” indicates whether the embedding is deterministic (in
particular works against adaptive adversary), or the guarantee is only in expectation (in particular works
only against oblivious adversary). The column “Pri.Kno” indicates what prior knowledge is required by the
embedding (applicable only for the upper bounds).

Our third result is a stochastic embedding into ultrametrics with expected distortion O(ddim ⋅ logΦ). This
is a generalization of [BFU20] (as every metric space has doubling dimension O(logn)), and an exponential
improvement in the dependence on ddim compared with [IMSZ10].

THEOREM 1.3. Given a sequence of metric points x1, x2, . . . arriving in an online fashion, there is a stochastic metric
embedding into an ultrametric (a 2-HST) with expected distortion O(ddim ⋅ logΦ), where ddim,Φ are the doubling
dimension and the aspect ratio of the metric space. No prior knowledge is required.

REMARK 1. In fact, for a pair of points {xj , xk} where j < k, the expected distortion guarantee provided
by Theroem 1.3 is O(ddimj) ⋅ logΦj , where ddimj and Φj are the doubling dimension and aspect ratio
of the metric space induced by the prefix {x1, . . . , xj}. This is also known as prioritized distortion. See
[EFN18, BFN19, FGK20, EN22] for further details on prioritized distortion.

If the points arrive from Euclidean d-dimensional space, we obtain expected distortion O(
√
d ⋅ logΦ), which

is a quadratic improvement in the dependence on the dimension.

THEOREM 1.4. Given a sequence of points x1, x2, . . . in Euclidean d-space (Rd, ∥ ⋅∥2) arriving in an online fashion, there
is a stochastic metric embedding into an ultrametric (a 2-HST) with expected distortion O(

√
d ⋅ logΦ), where Φ is the

aspect ratio (unknown in advance).

Bartal et al. [BFU20] used their stochastic online embedding to design competitive online algorithms for
certain network design problems. Surprisingly, they showed that in many cases the dependence on the aspect
ratio can be avoided. One can improve some parameters by pluging in our Theorem 1.3–1.4 into their framework.
One example is the Subadditive Constrained Forest problem [GW95], where we can improve the competitive
ratio from O(log2 k) to O(ddim ⋅ log k), (or O(

√
d ⋅ log k) for points in Euclidean d-space). See the full paper for

further discussion.

1.1.2 Minimum Weight Perfect Matchings Our results on online minimum-weight perfect matchings are
summarized in Table 2.

In the full paper, we design a randomized algorithm against an oblivious adversary that maintains a perfect
matching with competitive ratio O(ddim ⋅ logΦ) and recourse O(logΦ).
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Adversary Metric Recourse Approx. ratio Approx. type Reference
Adaptive General O(log2 n) O(logn) lightness Theorem 1.8
Oblivious General O(min{log3 n, logΦ}) O(ddim ⋅ logΦ) comp. ratio Theorem 1.5
Oblivious (Rd, ∥.∥2) O(min{log3 n, logΦ}) O(

√
d ⋅ logΦ) comp. ratio Theorem 1.6

Oblivious 2-HST O(min{log3 n, logΦ}) O(1) comp. ratio Lemma 1.1

Oblivious General r Ω( logn
r log r

) comp. ratio
& lightness

Theorem 1.7

Oblivious General 1 ∞ comp. ratio Proposition 1.1

Table 2: Summary of our online algorithms and lower bounds for online minimum weight perfect matching with
recourse. The input is n points in a metric space with aspect ratio Φ.

THEOREM 1.5. There is a randomized algorithm that, for any sequence of metric points x1, . . . , x2n revealed by an
oblivious adversary in an online fashion with aspect ratio Φ and doubling dimension ddim (both unknown in advance),
maintains a perfect matching of expected competitive ratio O(ddim ⋅ logΦ) with recourse O(logΦ). Alternatively, the
recourse can be bounded by O(log3 n).

Moreover, we show that the competitive ratio can be further improved to O(
√
d ⋅ logΦ) if the input points

are from Euclidean d-space. Following the exact same lines, we conclude:

THEOREM 1.6. There is a randomized algorithm such that given points x1, . . . , x2n ∈ Rd revealed by an oblivious
adversary in an online fashion with aspect ratio Φ = maxi,j ∥xi−xj∥2

mini,j ∥xi−xj∥2 (unknown in advance), maintains a perfect matching of

expected competitive ratio O(
√
d ⋅ logΦ) with recourse O(logΦ). Alternatively, the recourse can be bounded by O(log3 n).

Note that, every n-point metric space has doubling dimension O(logn). For example, for the shortest path
metric of unweighted graphs, Theorem 1.5 provides a competitive ratio of O(log2 n).

Theorem 1.5 and Theorem 1.6 are proven by a reduction to hierarchically well-separated tree (HST, a.k.a.
ultrametric, see Definition 2) via Theorem 1.3 and Theorem 1.4, respectively. For an HST of height h, we
can maintain a minimum-weight perfect matching (i.e., an optimum matching) using recourse O(h). Using
heavy-path decomposition, we can also maintain a O(1)-approximate minimum-weight matching with recourse
O(log3 n) (see Lemma 1.1).

It is clear that without any recourse, the competitive ratio for the online minimum-weight perfect matching
is unbounded (see example in Section 1). Can we bound the competitive ratio if we allow one recourse per point
pair? That is, for each new point pair, we allow the algorithm to delete one edge when it updates a perfect
matching. For online MST, for example, Gu et al. [GGK16] achieve a competitive ratio of Ω( 1

k
)with one recourse

for every k new points.

PROPOSITION 1.1. Given a single recourse per vertex pair, there is no competitive online algorithm. This already holds
for a sequence of 8 points in R, even if the sequence is known in advance.

Next, we establish a lower bound using points on the real line (with linear aspect ratio) such that the recourse
times the competitive ratio must be Ω̃(logn). Note that for metric spaces with polynomial aspect ratio, our
Theorem 1.5 and Theorem 1.6 are tight up to a quadratic factor. 8

THEOREM 1.7. For every r ≥ 2, every online algorithm for minimum-weight perfect matching problem with recourse r,
even for n points in the real line, has competitive ratio Ω ( logn

r⋅log r) against an oblivious adversary. Furthermore r can depend
on n.

8As we try to optimize simultaneously both the competitive ratio and the recourse, it is natural to define a new parameter called
performance, which equals competitive ratio times recourse. Thus for metric space with polynomial aspect ratio and constant ddim, our
Theorem 1.5 has performance O(log2 n), while by Theorem 1.7, the performance is at least minr {r, logn

log r
} = Ω( logn

log logn
). Thus, ignoring

second order terms, Theorem 1.5 is tight up to a quadratic factor.
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Finally, we design a deterministic algorithm against an adaptive adversary that maintains a perfect matching
of weight O(logn) ⋅ Cost(MST) with recourse O(log2 n) in any metric space (Theorem 1.8). The lightness of
weighted graph G on a point set is the ratio Cost(G)

Cost(MST) of the weight of G to the weight of an MST, and it is a
popular measure in network optimization. The lightness of a perfect matching may be arbitrarily close to zero,
and it is always at most one9. However, for 2n uniformly random points in a unit cube [0,1]d for constant d ∈ N,
for example, the expected minimum weight of a perfect matching is proportional to the maximum weight of
an MST [SRP83, SS89]. Interestingly, in our lower bound (Theorem1.7) the weight of the perfect matching is
Θ(diam) = Θ(MST). Thus, in particular, it implies that the product of the recourse and the lightness of any
oblivious algorithm is Ω̃(logn). Hence, our algorithm against an adaptive adversary is comparable to the best
possible oblivious algorithm w.r.t. the lightness parameter.

THEOREM 1.8. For a sequence of points in a metric space (X,d), we can maintain a perfect matching of weight
O(log ∣Si∣) ⋅Cost(MST(Si)) using recourse O(log2 ∣Si∣) where Si is the set of the first 2i points.

1.2 Technical Ideas
Online Padded Decompositions and Online Embedding into HST. A (∆, β)-padded decomposition of a

metric space (X,dX) is a random partition of X into clusters of diameter at most ∆ such that for a ball
B = BX(v, r) of radius r centered at v, the probability that the points of B are split between different clusters is at
most β ⋅ r

∆
. A metric space is β-decomposable if it admits a (∆, β)-padded decomposition for every ∆ > 0. Building

on previous work [Bar96, Rao99, KLMN04], the main ingredient in all our metric embeddings (in particular the
deterministic Theorem 1.1) are padded decompositions. Every n-point metric space is O(logn)-decomposable
[Bar96], while every metric space with doubling dimension ddim is O(ddim)-decomposable [GKL03, Fil19].
Roughly speaking, Bartal’s padded decomposition [Bar96] works using a ball growing technique: Take an
arbitrary order over the metric points x1, . . . , xn, sample radii R1, . . . ,Rn from exponential distribution with
parameter Θ(logn), and successively construct clusters Ci = BX(xi,Ri ⋅ ∆) ∖ ⋃j<iCj . In words, there are n
clusters centered in the points of X . Each point y joins the first cluster Ci such that dX(y, xi) ≤ Ri ⋅∆. With high
probability, it holds that maxRi ≤ 1

2
and thus the diameter of all the resulting clusters is bounded by ∆. Further,

consider a ball B = BX(v, r), and suppose that u ∈ B is the first point to join a cluster Ci. Then Ri ≥ dX(xi,u)
∆

.
By the triangle inequality, Ri ≥ dX(xi,u)

∆
+ 2r will imply that all the points in B will join Ci. By the memoryless

property of the exponential distribution, the probability that Ri < dX(xi,u)
∆

+ 2r is at most O(logn) ⋅ 2r
∆

.
An HST (hierarchically separated tree, see Definition 2) is in essence just a hierarchical partition. Bartal’s

embedding into HST then works by creating separating decompositions for all possible distance scales ∆i = 2i,
i ∈ Z. That is, each i-level cluster is partitioned into (i − 1)-level clusters using the padded decomposition
described above. Let i be the first scale such that u and v were separated, the distance between them in the HST
will be 2i+1. Thus the expected distance between u, v is bounded by10

(1.1) ∑
i≥log dX(u,v)

2i+1 ⋅Pr[u, v are separated at level i] ≤ ∑
i≥log dX(u,v)

2i+1 ⋅O(logn) ⋅ dX(u, v)
2i

≤ O(logΦ ⋅ logn) .

Indyk et al. [IMSZ10] observed that, given metric points x1, . . . , xn in an online fashion, we can still preform
Bartal’s padded decomposition, since the order of the points were arbitrary. However, [IMSZ10] required prior
knowledge of n and the aspect ratio Φ (in order to determine the parameter of the exponential distribution, and
the relevant scales). Later, Bartal et al. [BFU20] observed that sampling Rj using exponential distribution with
parameter O(log j) will still return a padded decomposition, and thus removed the requirement to know n in

9The weight of an MST is at least as large as the weight of the minimum perfect matching. Indeed, following the approach of
Christofides algorithm, double each edge of the MST to obtain an Euler cycles C of weight 2Cost(MST). Let x1, . . . , x2n be the
order of the points in the order of their first occurrence along the tour. The two matchings M1 = (x1, x2), . . . , (x2n−1, x2n) and
M2 = (x2, x3), . . . , (x2n−2, x2n−1), (x2n, x1) combined have weight at most Cost(C) = 2Cost(MST). In particular, the weight of the
minimum perfect matching is at most Cost(MST).

10Bartal [Bar96] obtains expected distortion O(log2 n) by contracting all pairs at distance at most ∆i
poly(n)

before preforming the

decomposition at scale i. The effect of this contraction on pairs at distance Θ̃(∆i) is negligible, while the contraction ensures that u, v
have nonzero probability of being separated in only O(logn) different scales.
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advance. To remove the requirement to know Φ in advance, [BFU20] simply forced R1 to be Ω(1), and thus
ensuring that all the partitions above a certain threshold are trivial.

Gupta, Krauthgamer, and Lee [GKL03] showed that every metric space with doubling dimension ddim is
O(ddim)-decomposable. Their decomposition follows the approach from [CKR04], which samples a global
permutation to decide where to cluster each point. Later, Filtser [Fil19] used the random shifts clustering
algorithm of Miller, Peng, and Xu [MPX13] to obtain a similar decomposition with strong diameter guarantee.11

However, both these decompositions are crucially global and centralized, and it is impossible to execute them
in an online fashion. Indyk et al. [IMSZ10] studied online embeddings of doubling metrics into ultrametrics.
However, lacking good padded decompositions for doubling spaces, they ended up using a similar partition
based approach, which lead to an expected distortion 2O(ddim) ⋅ logΦ.

We show that one can construct a padded decomposition with padding parameter O(ddim) using the
ball growing approach of Bartal [Bar96]: Sample the radii using an exponential distribution with parameter
O(ddim). This is crucial, as such a decomposition can be executed in an online fashion. Furthermore, one does
not need to know the doubling dimension in advance. It is enough to use the doubling dimension of the metric
space induced on the points seen so far. Interestingly, even if the doubling dimension eventually will turn out
to be O(logn), the decomposition will have the optimal O(logn) parameter. Using these decomopsitions, we
construct an HST in an online fashion and obtain Theorem 1.3 by replacing the O(logn) factor in inequality (1.1)
by O(ddim).

Online Deterministic Embedding into Euclidean Space. Bourgain’s [Bou85] optimal embedding into
Euclidean space with distortion O(logn) is a Fréchet type embedding. Specifically, it samples subsets uniformly
with different densities, and sets each coordinate to be equal to the distance to a certain sampled subset. This
is a global, centralized approach that cannot be executed in an online fashion. In contrast, Rao’s [Rao99] classic
embedding of the shortest path metric of planar graphs into ℓ2 with distortion O(

√
logn) is based on padded

decompositions. Indyk et al. [IMSZ10] followed the padded decomposition based approach of Rao [Rao99].
Roughly speaking, Rao’s approach is to create padded decompositions P for all possible distance scales, where
we have a distinct coordinate for each partitionP . For every cluster C ∈ P , assign a random coefficient αC ∈ {±1}.
Finally, for every x ∈ C, assign value αC ⋅hC(x), where hC(x) is the distance from x to the “boundary” of C. One
can show that the distance in every coordinate is never expanding, while for two points x, y, in the scale dX(x, y),
with constant probability, x, y will be separated, and x will be at least Ω(dX(x,y)

logn
) away from the boundary of its

cluster—thus we will get some contribution to the distance. By sampling many such decompositions, one can
get concentration, and thus an embedding with distortion O(logn ⋅ logΦ) against an oblivious adversary. Indyk
et al. did not suggest any way to cope with an adaptive adversary. Newman and Rabinovich [NR20] provided
an Ω(√n) lower bound for such an embedding, and conjectured that poly(n) distortion should always suffice.
However, they did not suggest any way to achieve it.

Next Indyk et al. [IMSZ10] moved to embedding doubling spaces. Lacking good online padded
decompositions, they observed that an isometric embedding of ultrametric into ℓ2 can be maintained in an online
fashion, and thus getting expected distortion 2O(ddim) ⋅logΦ against an oblivious adversary. Plugging in our new
padded decomposition into Rao’s approach, one can get (worst case w.h.p.) distortion O(ddim ⋅

√
logΦ) against

an oblivious adversary. But how can one construct deterministic embedding to cope with an adaptive adversary?
Our solution is to create a “layer of abstraction”. The previous ideas provide an embedding with expected

distortion O(ddim⋅
√
logΦ). Specifically, we get expansion O(

√
logΦ) in the worst case, and contraction O(ddim)

in expectation. The only randomness is over the choice of radii in the ball growing that creates the padded
decompositions (and some additional boolean parameters). Given a new point xi, the expected squared distance
Ef [∥f(xi) − f(xj)∥22] can be computed exactly, as it only depends on the points that have arrived so far, with
no randomness involved. In a sense, instead of mapping a metric point xi into a vector in ℓ2, we map it into a
well-defined function fi ∶ (r1, r2, . . . , ri)→ ℓ2. These functions are in the function space L2, and the distance

∥fi − fj∥2 = (∫
r1,...,ri

∥fi(r1, . . . , ri) − fj(r1, . . . , rj)∥22)
1
2

11Given an edge-weighted graph G = (V,E,w) and a cluster C ⊆ V , the (weak) diameter of C is maxu,v∈C dG(u, v) the maximum pairwise
distance in C w.r.t. the shortest path metric of G. The strong diameter of C is maxu,v∈C dG[C](u, v) the maximum pairwise distance in C
w.r.t. the shortest path metric of the induced subgraph G[C].
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equals the expected distance by the random metric embedding. However, we want to return vectors and not
complicated functions. In fact, the only required information is the L2 distance between these functions, which
define an Euclidean distance matrix. Given such a matrix, one can find a set of vectors implementing it (which
is unique up to rotation and translation). Furthermore, these vectors can be efficiently and deterministically
computed in an online fashion!

Online Minimum-Weight Perfect Matchings in Metric Spaces. Given a sequence of metric points
s1, . . . , s2i in an online fashion from an unknown metric space, we use the online embedding algorithm to embed
them into an ultrametric or the real line (with some distortion), and maintain a matching with recourse on the
embedded points. If we can maintain a good approximation for the online MWPM in an ultametric (or in R),
then we can maintain the same approximation ratio, with the distortion of the embedding as an overhead, for
the online MWPM problem.

Optimal Matchings on Trees: Inward Matchings. An ultrametric is represented by an hierarchically well-
separated tree T , a rooted tree with exponentially decaying edge weights. As points arrive in an online fashion,
the online embedding algorithm may successively add new leaves to T ; and the points are embedded in the
nodes of T . We show that a simple greedy matching is optimal (i.e., has minimum-weight) in an ultrametric, and
can easily be updated with recourse proportional to the height of T . Specifically, an inward matching, introduced
here, maintains the invariant that the points in each subtree induce a near-perfect matching. When a pair of new
points arrive, we can restore this property by traversing the shortest paths between the corresponding nodes in
T . Consequently, an inward matching can be maintained with recourse O(h), where h is the height of T . We
have h ≤ O(logΦU), where ΦU is the aspect ratio of the ultrametric U , which in turn is bounded by O(logΦX),
the aspect ratio of the metric space X induced by the input points seen so far.

Heavy-Path Decomposition on HSTs. Bartal et al. [BFU20] showed that the distortion of any online metric
embedding algorithm into trees depends on the aspect ratio Φ, in particular, the factor logΦ in our distortion
bounds in Theorems 1.3–1.4 is unavoidable. It is unclear whether any dependence on Φ is necessary for
the bounds for the online MWPM problem. We can eliminate the dependence on Φ for the recourse, while
maintaining the same approximation guarantee (which, however, still depends on the distortion, hence on Φ).

Instead of an optimal matching on the HST T , we maintain an 2-approximate minimum-weight perfect
matching. We use the classical heavy-path decomposition of the tree T , due to Sleator and Tarjan [ST83], which is
a partition of the vertices into subsets that each induce a path (heavy path); the key property is that every path
in T intersects only O(logn) heavy paths, regardless of the height of h. The heavy path decomposition can be
maintained dynamically with O(logn) split-merge operations over the paths.

We relax the definition of inward matchings such that at most one edge of the marching can pass between
any two adjacent heavy paths, but we impose only mild conditions within each heavy path. A charging scheme
shows that the relaxed inward matching is a 2-approximation of the MWPM.

LEMMA 1.1. In k-HST with n nodes, where new nodes are added in an online fashion, one can maintain an 2-approximate
minimum-weight perfect matching with recourse O(log3 n).

On each heavy path, we maintain a matching designed for points on a real line, with O(log2 n) depth12, which
supports split-merge operations in O(log2 n) changes in the matching (i.e., recourse). Overall, we can maintain
a 2-approximate minimum-weight matching on T with worst-case recourse O(log3 n).

Minimum-Weight Matching on a Real Line: Reduction to Depth. We reduce the online MWPM problem
to a purely combinatorial setting. For a set of edges E on a finite set S ⊂ R, we say that E is laminar if there are
no two edges a1b1 and a2b2 such that a1 < a2 < b1 < b2 (i.e., no two interleaving or crossing edges). Containment
defines a partial order: We say that a1b1 ⪯ a2b2 (resp., a1b1 ≺ a2b2) if the interval a2b2 contains (resp., properly
contains) the interval a1b1. The Hasse diagram of a laminar set E of edges is a forest of rooted trees F (E) on
E, where a directed edge (a1b1, a2b2) in F (E)means that a2b2 is the shortest interval that strictly contains a1b1.
The depth of E is the depth of the forest F (E); equivalently, the depth of E is the maximum number of pairwise
overlapping edges in E. Based on this, we show that for a dynamic point set S on R, one can maintain a laminar
near-perfect matching of depth O(logn) such that it modifies (adds or deletes) at most O(log2 n) edges in each
step.

12The depth of a matching on n points in R (or a path) is the maximum number of pairwise overlapping edges.

Copyright © 2024
Copyright for this paper is retained by authors4572

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 4

6.
11

7.
10

3.
92

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Importantly, the laminar property and the depth of the matching depend only on the order of the points in
S, and the real coordinates do not matter. While it is not difficult to maintain a laminar near-perfect matching.
However, controlling the depth is challenging. We introduce the notion of virtual edges, which is the key technical
tool for maintaining logarithmic depth. We maintain a set of invariants that ensure that, for a nested sequence
of edges yields a nested sequence of virtual edges with the additional property that they have exponentially
increasing lengths. We argue that if a near-perfect matching with virtual edges satisfies the invariants then the
depth of such matching is logarithmic.

We reduce the case of general metric space to a line metric using a result by Gu et al. [GGK16]: Given
a sequence of metric points, one can maintain a spanning tree of weight O(Cost(MST)) in an online fashion
(insertion only), with constant recourse per point. We maintain an Euler tour13 E(T ) for the tree T produced by
their algorithm. The Euler tour E(T ) induces a Hamilton path P(T ) (according to the order of first appearance).
Intuitively, we treat the metric points as if they were points on a line ordered according to P(T ). We show
that each edge deletion and each edge insertion in the forest F incurs O(1) edge insertions or deletions in the
tour E(T ) and path P(T ), a very limited change! Thus we can use our data structure for the line to maintain a
near-perfect matching for the points w.r.t. P(T ). As the total weight of this path is O(Cost(MST)), we obtain a
perfect matching of weight O(logn) ⋅Cost(MST) using recourse O(log2 n).

Lower Bounds for Competitive Ratio and Recourse on Minimum-Weight Matchings. For integers r ≥ 2
and n ≥ 10 r, we show that an adaptive adversary can construct a sequence Sn of integer points on the real line
such that any deterministic online perfect matching algorithm with recourse r per arrival maintains a perfect
matching of weight Ω (diam(Sn) logn

r log r
). The adversary presents points in k = Θ ( logn

r log r
) rounds. In round 0, the

points are consecutive integers. In subsequent rounds, the number of points decreases exponentially, but the
spacing between them increases. If the algorithm matches new points among themselves in every round, the
weight of the resulting matching would be Ω(k ⋅OPT). The weight could be improved with recourse, however,
the number of new points rapidly decreases, and they do not generate enough recourse to make amends: We
show that the weight increases by Ω(OPT) in every round. There is one twist in the adversarial strategy, which
makes it adaptive: If the matching Mi−1 at the beginning of round i could possibly “absorb” the points of round i
(in the sense that the weight would not increase by Ω(OPT)), then we show that Mi−1 already contains many
long edges and Cost(Mi−1) ≥ Ω(i ⋅OPT): In this case, the adversary can simply skip the next round.

In fact, this lower bound construction extends to oblivious adversaries by skipping some of the rounds
randomly. Moreover, since, for a set of points in the real line, the minimum weight of a perfect matching is
trivially bounded by the diameter of the point set, we conclude that the lightness and competitive ratio of any
online algorithm with constant recourse is Ω(logn); and an O(1)-competitive algorithm would require recourse
at least r = Ω(logn/ log logn).

1.3 Related Work
Online Minimum-Weight Perfect Matching with Delays. Similarly to our model, Emek et al. [EKW16]

considered online minimum-weight perfect matchings in a metric space. However, they allow delays instead
of recourse: The decisions of the online matching algorithm are irrevocable, but may be delayed, incurring
a time penalty of ti if a point si remains unmatched for ti units of time. The objective is to minimize the
sum of the weight and all time penalties. Emek et al. [EKW16] show that a randomized algorithm (against
an oblivious adversary) can achieve a competitive ratio O(log2 n + logΦ) in this model, where Φ is the aspect
ratio of the metric space (which can be unbounded as a function of n). Later, Azar et al. [ACK17], improved the
competitive ratio to O(logn). Ashlagi et al. [AAC+17] studied the bipartite version of this problem; and Mari et
al. [MPRS23] considered the stochastic version of this problem where the input requests follow Poisson arrival
process. Recently, Deryckere and Umboh [DU23] initiated the study of online problems with set delay, where
the delay cost at any given time is an arbitrary function of the set of pending requests. However, time penalties
cannot be directly compared to the recourse model. An advantage of the recourse model is that it allows us to
maintain perfect matching explicitly at all times, as opposed to the delay model where some points might remain
unmatched at every step.

Online algorithms with recourse have been studied extensively over the years; see [IW91, MSVW16, GGK16,

13A DFS traversal of a tree T (starting from an arbitrary root) defines an Euler tour E(T ) that traverses every edge of T precisely twice
(once in each direction).
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GGK+22, BGW21, BHR19]. The question is, given the power of hindsight, how much one can improve the
solution of an online algorithm [GGK16].

Online MST with Recourse. In the online minimum spanning tree (MST) problem, points in a metric space
arrive one by one, and we need to connect each new point to a previous point to maintain a spanning tree.
Without recourse, Imase and Waxman [IW91] showed that a natural greedy algorithm is O(logn)-competitive,
and this bound is the best possible (see also [AA93, DT07]). They also showed how to maintain a 2-competitive
tree with recourse O(n3/2) over the first n arrivals for every n. Therefore, the amortized budget, i.e., the average
number of swaps per arrival, is O(√n). Later, Megow et al. [MSVW16] substantially improved this result. They
gave an algorithm with a constant amortized budget bound. In a breakthrough, Gu et al. [GGK16] showed that
one can maintain a spanning tree of weight O(Cost(MST))with recourse O(1) per point.

When new points arrive in the online model, the weight of the MST may decrease. However, it cannot
decrease by a factor more than 1

2
. Indeed, the decrease is bounded by the Steiner ratio [GP68], which is the

infimum of the ratio between the weight of a Steiner tree and the MST for a finite point set, and is at least 1
2

in
any metric space. Similarly, in the online traveling salesman problem (TSP), where the length of the optimal TSP
tour increases monotonically as new points arrive, one can maintain an O(1)-competitive solution with constant
recourse (see Section 1.3).

Online TSP. In the online traveling salesman problem (TSP), points of a metric space arrive one by
one, and we need to maintain a traveling salesman tour (or path) including the new point. Rosenkrantz et
al. [RSI77] showed that a natural greedy algorithm with one recourse per point insertion (replacing one edge
by two new edges) is O(logn) competitive, and there is a lower bound of Ω(logn/ log logn) even in Euclidean
plane [Aza94, BKP94]. However, as an Euler tour around an MST 2-approximates the weight of a TSP tour,
the online MST algorithm by Gu et al. [GGK16] immediately yields a O(1)-competitive algorithm with recourse
O(1).

Kalyanasundaram and Pruhs [KP94] studied a variant of online TSP, where new cities are revealed locally
during the traversal of a tour (i.e., an arrival at a city reveals any adjacent cities that must also be visited). Jaillet
and Lu [JL11] studied the online TSP with service flexibility, where they introduced a sound theoretical model to
incorporate “yes-no” decisions on which requests to serve, together with an online strategy to visit the accepted
requests.

Greedy Matchings. Online algorithms with or without recourse often make greedy choices. For the online
MWPM, the following greedy approach with constant recourse seems intuitive: Suppose points p1 and p2
arrive when our current matching on Si is Mi. Then we find a closest neighbor for p1 and p1, resp., say a1
and a2 in Si+1, delete any current edges a1b1, a2b2 ∈ Mi, and add all edges of a minimum-weight matching on
{a1, a2, b1, b2, p1, p2} to the matching.

An online greedy approach would, at best, “approximate” an offline greedy solution. The offline greedy
algorithm successively adds an edge ab between the closest pair of vertices and removes both a and b from further
consideration. Reingold and Tarjan [RT81] showed, however, that the greedy algorithm on 2n points in a metric
space achieves an O(nlog 3

2 )-approximation, where log 3
2
≈ 0.58496, and this bound is the best possible already

on the real line. Frieze, McDiarmid, and Reed [FMR90] later showed that for integers Sn = {1,2, . . . ,2n} ⊂ R, the
offline greedy algorithm returns an O(logn)-approximation, and this bound is tight (if ties are broken arbitrarily
when multiple point pairs attain the minimum distance).

Metric Embeddings. There is a vast literature on metric embeddings that we will not attempt to cover here.
We refer to the extended book chapter [Mat13], and some of the recent papers for an overview [AFGN22, FGK20,
Fil21, FL21]. See also the recent FOCS22 workshop. In the context of online embeddings, embeddings into low
dimensional ℓ1, ℓ2, and ℓ∞ normed spaces were studied [IMSZ10, NR20]. In particular, every tree metric admits
an isometric (with distortion 1) online embedding into ℓ1 [NR20]. A significant part of the metric embeddings
literature is concerned with the embedding of topologically restricted metric spaces, such as planar graphs,
minor free graphs, and graphs with bounded treewidth/pathwidth [Rao99, KLMN04, Fil20, FKS19, CFKL20,
FL22]. However, at present, these embeddings do not have online counterparts. The reason is perhaps the lack
of a good online version of a padded decompositions for such spaces [KPR93, FT03, AGG+19, Fil19]. Designing
online padded decompositions for such spaces is a fascinating open problem.
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2 Preliminaries
Ultrametrics. An ultrametric (X,d) is a metric space satisfying a strong form of the triangle inequality, that

is, for all x, y, z ∈ X , d(x, z) ≤ max{d(x, y), d(y, z)}. A related notion is a k-hierarchically well-separated tree
(k-HST).

DEFINITION 2. (k-HST) A metric (X,dX) is a k-hierarchically well-separated tree (k-HST) if there exists a bijection
φ from X to leaves of a rooted tree T in which:

1. each node v ∈ T is associated with a label Γv such that Γv = 0 if v is a leaf, and Γ(v) ≥ kΓ(u) if v is an internal node
and u is any child of v;

2. dX(x, y) = Γ(lca(φ(x), φ(y))) where lca(u, v) is the least common ancestor of any two given nodes u, v in T .

It is well known that any ultrametric is a 1-HST, and any k-HST is an ultrametric (see [BLMN05]). Note that
a 1-HST induces a laminar partition of the metric space. For an internal node v ∈ T , denote by Xv the set of
leaves in the subtree rooted at v. We will use the terms ultrametric and 1-HST interchangeably throughout the
paper.

Doubling Dimension. The doubling dimension of a metric space is a measure of its local “growth rate”.
A metric space (X,d) has doubling constant λ if for every x ∈ X and radius r > 0, the ball B(x,2r) can be
covered by λ balls of radius r. The doubling dimension is defined as ddim = log2 λ. A d-dimensional ℓp space
has ddim = Θ(d), and every n point metric has ddim = O(logn). Even though it is NP-hard to compute the
doubling dimension of a metric space [GK13], in polynomial time, one can compute an O(1)-approximation
[HM06, Theorem 9.1]. The following lemma gives the standard packing property of doubling metrics (see, e.g.,
[GKL03, Proposition 1.1].).

LEMMA 2.1. (PACKING PROPERTY) Let (X,d) be a metric space with doubling dimension ddim. If S ⊆ X is a subset
of points with minimum interpoint distance r that is contained in a ball of radius R, then ∣S∣ ≤ 2ddim⋅⌈log 2R

r
⌉ .

3 Conclusions
We introduced the problem of online minimum-weight perfect matchings for a sequence of 2n points in a
metric space. In contrast to the online MST and TSP, where O(1)-competitive algorithms with recourse O(1) are
known, we showed that the competitive ratio or the recourse must be at least polylogarithmic. We also devised
polylogarithmic upper bounds for the competitive ratio and lightness, resp., against oblivious and adaptive
adversaries, using polylogarithmic recourse. Closing the gaps between the upper and lower bounds are obvious
open problems, both in general metrics and in special cases such as Euclidean spaces or in ultrametrics. We
highlight a few specific open problems.

1. We have shown (Propositiom 1.1) that recourse r = 1 per point pair is not enough for a competitive
algorithm. Is there a competitive algorithm with recourse r = O(1)?

2. What is the minimum recourse for an O(1)-competitive algorithm against an adaptive (resp. oblivious)
adversary? Our Theorem 1.7 gives a lower bound of Ω(logn/ log logn), but we are unaware of any
nontrivial upper bound.

3. Are the optimal trade-offs different for competitive ratio and for lightness? Does it take more recourse to
maintain a perfect matching of weight O(ϱ ⋅OPT) than one of weight O(ϱ ⋅MST) for any ratio ϱ ≥ 1? Our
lower bound (Theorem 1.7) does not distinguish between competitive ratio and lightness, but in general
the ratio MST

OPT
is unbounded.

4. For maintaining a minimum-weight near-perfect matching on a fully dynamic point set (with insertions
and deletions), what are the best possible trade-offs between the approximation ratio (or lightness) and the
number of changes in the matching? Our 1D data structure can handle both point insertions and deletions,
and maintains a matching of lightness O(logn), but the problem remains open in other metric spaces.

5. Consider the adversarial model, sometimes called prefix-model, which is weaker than the oblivious model.
Here, the metric space (X,δ) and the entire sequence of arriving points x1, x2, . . . , x2n are known in
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advance. The goal is to construct a sequence of n matchings M1,M2, . . . ,Mn, where Mi is a perfect
matching for Si = {x1, . . . , x2i}, while minimizing the competitive ratio maxi

Cost(Mi)
OPT(Si) , and the maximum

recourse maxi ∣Mi∖Mi+1∣. Note that our lower bound from Proposition 1.1 holds in this model, as well, and
thus a single recourse is not enough for a competitive algorithm. Clearly, we can use the same algorithm we
used for oblivious routing (Theorem 1.5), while using the embedding of [FRT04] instead of [BFU20], and
thus improving the competitive ratio to O(logn). Is it possible to further improve on either the competitive
ratio or the recourse?

6. Online Decomposition of Minor-Free Graphs. Consider the shortest path metric of a fixed minor-free graph
(e.g., planar graphs). Such metrics enjoy a good padded decomposition scheme [KPR93, AGG+19, Fil19],
and therefore also better embeddings into Euclidean space, compared to general metric spaces [Rao99].
However, no online version of such a decomposition is known, even for subfamilies such as planar graphs,
and bounded treewidth/pathwidth graphs. Note that, given such a decomposition, the framework in this
paper will imply good online metric embeddings into both HST and Euclidean spaces. Thus we find the
construction of such decompositions to be a fascinating open problem. One might be tempted to think that
the KPR [KPR93] decomposition can be easily implemented in an online fashion. This would make sense
as the choice of a center in every ring in the decomposition is arbitrary. However, unfortunately only the
first rings/chops are constructed w.r.t. the original metric. All the other steps are preformed w.r.t. induced
subgraphs. It is unclear how to obtain distances, or even an approximation in an induced subgraph defined
by a chop in an online fashion.

7. Krauthgamer et al. [KLMN04] showed that every metric space with doubling dimension ddim can be
embedded into Euclidean space with distortion O(

√
ddim ⋅ logn); and this bound is known to be tight

[JLM11]. In contrast, our online embedding has distortion O(ddim ⋅
√
logΦ). In Theorme 1.2 we showed

that the dependence on the aspect ratio Φ is tight. It would be interesting to see whether the dependence
on the doubling dimension can be improved to

√
ddim.
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