
Algorithmica
https://doi.org/10.1007/s00453-022-01080-1

Approximate Nearest Neighbor for Curves: Simple,
Efficient, and Deterministic

Arnold Filtser1 ·Omrit Filtser2 ·Matthew J. Katz3

Received: 20 June 2022 / Accepted: 28 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In the (1+ ε, r)-approximate near-neighbor problem for curves (ANNC) under some
similarity measure δ, the goal is to construct a data structure for a given set C of
curves that supports approximate near-neighbor queries: Given a query curve Q, if
there exists a curve C ∈ C such that δ(Q, C) ≤ r , then return a curve C ′ ∈ C
with δ(Q, C ′) ≤ (1 + ε)r . There exists an efficient reduction from the (1 + ε)-
approximate nearest-neighbor problem to ANNC, where in the former problem the
answer to a query is a curve C ∈ C with δ(Q, C) ≤ (1 + ε) · δ(Q, C∗), where C∗
is the curve of C most similar to Q. Given a set C of n curves, each consisting of m
points in d dimensions, we construct a data structure for ANNC that uses n · O(1

ε
)md

storage space and has O(md) query time (for a query curve of length m), where
the similarity measure between two curves is their discrete Fréchet or dynamic time
warping distance. Our method is simple to implement, deterministic, and results in
an exponential improvement in both query time and storage space compared to all
previous bounds. Further, we also consider the asymmetric version of ANNC, where
the length of the query curves is k � m, and obtain essentially the same storage and
query bounds as above, except that m is replaced by k. Finally, we apply our method
to a version of approximate range counting for curves and achieve similar bounds.

A preliminary version of this paper excluding Sect. 6 and Appendices B and C has appeared in ICALP’20
[15].

B Omrit Filtser
omrit.filtser@gmail.com

Arnold Filtser
arnold273@gmail.com

Matthew J. Katz
matya@cs.bgu.ac.il

1 Bar-Ilan University, Ramat Gan, Israel

2 The Open University of Israel, Ra’anana, Israel

3 Ben-Gurion University of the Negev, Be’er Sheva, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01080-1&domain=pdf
http://orcid.org/0000-0002-3978-1428

Algorithmica

Keywords Nearest neighbor search · Polygonal curves · Fréchet distance · Dynamic
time warping

Contents

1 Introduction .
1.1 Related Work .
1.2 Technical Ideas .

2 Preliminaries .
3 Discrete Fréchet Distance (DFD) .
4 The Asymmetric Setting Under DFD .
5 �p,2-Distance of Polygonal Curves .
6 The Asymmetric Setting Under �p,2-distance .

6.1 Simplification Under �p,2-Distance .
6.2 The Data Structure .

7 Approximate Range Counting .
8 Simplification in d-dimensions .
Appendix: A Deterministic Construction Using a Prefix Tree .

Appendix: A.1 Discrete Fréchet Distance .
Appendix: A.2 �p,2-Distance .

Appendix: B Dealing with Query Curves and Input Curves of Varying Size
Appendix: C One-Way Alignments .
References .

1 Introduction

Nearest neighbor search is a fundamental and well-studied problem that has various
applications in machine learning, data analysis, and classification. This important task
also arises in applications where the recorded instances are trajectories or polygonal
curves modeling, for example, epigenetic and surgical processes, market value fluc-
tuations, population growth, the number of the requests per hour received at some
web-page, and even the response of a football player in a given situation.

Let C be a set of n curves, each consisting of at most m points in d dimensions, and
let δ be some distance measure for curves. In the nearest-neighbor problem for curves,
the goal is to construct a data structure for C that supports nearest-neighbor queries,
that is, given a query curve Q of length at mostm, return the curveC∗ ∈ C closest to Q
(according to δ). The approximation version of this problem is the (1+ε)-approximate
nearest-neighbor problem, where the answer to a query Q is a curve C ∈ C with
δ(Q, C) ≤ (1 + ε)δ(Q, C∗). We study a decision version of this approximation
problem, which is called the (1+ε, r)-approximate near-neighbor problem for curves
(ANNC). Here, if there exists a curve in C that lies within distance r of the query curve
Q, one has to return a curve in C that lies within distance (1 + ε)r of Q. Note that
there exists a reduction from the (1+ε)-approximate nearest-neighbor problem to the
(1+ε, r)-approximate near-neighbor problem [16, 18, 24], at the cost of an additional
logarithmic factor in the query time and an O(log2 n) factor in the storage space.

In practice, it is often the case that the query curves are significantly shorter than
the input curves (e.g., Google-search queries). Thus, we also study the asymmetric

123

Algorithmica

setting of (1 + ε, r)-ANNC, where each of the input curves has complexity at most
m, while each query curve has complexity at most k � m.

There are many methods that are used in real-world applications for comparing
curves, and one of the most prevalent is the (discrete) Fréchet distance (DFD for
short), which is often described by the following analogy. Two frogs are hopping from
vertex to vertex along two polygonal curves. At each step, one of the frogs or both frogs
may advance to the next vertex on its curve. The discrete Fréchet distance is defined
as the smallest maximum distance between the frogs that can be achieved in such a
joint sequence of hops. Another useful distance measure for curves or time series is
the dynamic time warping distance (DTW for short), in which instead of taking the
smallest maximum distance we take the smallest sum of distances.

In the last several years, a series of papers have been written investigating the
approximate near-neighbor problem for curves (ANNC) and its variants under the
Fréchet distance [1, 2, 8, 9, 13, 14, 19] (see Table 1), and several different approaches
and sophisticatedmethodswere utilized in order to provide efficient data structures.Up
to now, all data structures for ANNC under DFD have either a query time exponential
in m, or an infeasible storage space bound. In this paper, for the first time, we manage
to remove the exponential factor from the query time, while also significantly reducing
the space consumption. Our approach consists of a discretization of space based on
the input curves, which allows us to prepare a small set of curves that captures all
possible queries approximately.

Indyk [19] was the first to give a deterministic near-neighbor data structure for
curves under DFD. The data structure achieves an approximation factor of O((logm+
log log n)t−1) given some trade-off parameter t > 1. Its space consumption is very
high, O(m2|X |)tm1/t · n2t , where |X | is the size of the domain on which the curves are
defined, and the query time is (m log n)O(t). In Table 1 we set t = 1 + o(1) to obtain
a constant approximation factor.

Later, Driemel and Silvestri [13] presented a locality-sensitive-hashing scheme
for curves under DFD, improving the result of Indyk for short curves. Their data
structure uses O(24mdn log n) space and answers queries in O(24md log n) timewith an
approximation factor of O(d3/2). They also provide a trade-off between approximation
quality and computational performance: for d = O(1), and given a parameter k ∈ [m],
a data structure of size O(22kmk−1n log n + mn) is constructed that answers queries
in O(22kmk log n) time with an approximation factor of O(m/k). For constant k,
this data structure uses only poly(m) · n log n space and has poly(m) · log n query
time, however, the approximation factor is O(m). They also show that this result can
be applied to DTW, but only for the extreme of the trade-off which gives an O(m)

approximation.
Recently, Emiris andPsarros [14] presented near-neighbor data structures for curves

under bothDFDandDTW.Their algorithmprovides an approximation factor of (1+ε),
at the expense of increased space usage and preprocessing time. They use the idea that
for a fixed alignment between two curves (i.e., a given sequence of hops of the two
frogs), the problem can be reduced to the near-neighbor problem for points in �∞-
product of �2 spaces. Their basic idea is to construct a data structure for every possible
alignment. Once a query is given, they query all these data structures and return the

123

Algorithmica

closest curve found. This approach is responsible for the 2m factor in their query
time. Furthermore, they generalize this approach using randomized projections of �p-
products of Euclidean metrics (for any p ≥ 1), and define the �p,2-distance for curves
(for p ≥ 1), which is exactly DFD when p = ∞, and DTWwhen p = 1 (see Sect. 2).
The space used by their data structure is Õ(n) ·(2+ d

logm)O(m1+1/ε ·d log(1/ε)) with query

Õ(dm1+1/ε · 24m log n) for DFD and Õ(n) · 1
ε

O(md)
space and Õ(d · 24m log n) query

for DTW.
Har-Peled and Kumar [17] considered approximate nearest-neighbor for general

metric spaces where the query points are constrained to lie on a subspace of low
doubling dimension. It is easy to show that the doubling dimension of the metric space
for curves of length m in d dimensions under DFD, is bounded by O(md). Therefore,
their result implies that one can construct a (1 + ε)-approximate nearest-neighbor
data-structure requiring space in nε−O(md) and with query time in 2O(md) log(n/ε).
Note that in [13, 14] the query time is exponential in md and m, respectively, while
the space complexity is suboptimal (and in [13], the approximation factor is O(d3/2)

and not (1 + ε)). In this paper, we get the exact same space as in [17] (up to a log n
factor), which seems to be optimal, while the query time is linear in md (using the
more structured input).
Subsequent work In a recent work, Bringmann et al. [4] study the asymmetric setting of
(1 + ε, r)-ANNC under continuous Fréchet distance, for one-dimensional polygonal
curves (time series). Improving upon the work of Driemel and Psarros [11], they use
the idea of signatures to obtain some sort of a discrete version of the problem, and
then follow our approach of preparing in advance the answers to all relevant queries
on a discretization of the space (which was also used in [11]), to construct a data
structure with space in n · O

(m
kε

)k and query time in O(1)k . They also show that an
approximation factor of (2+ ε) can be obtained with the same space bound and O(k)

query time. This provides additional evidence that our approach to ANNC, although
quite simple and easy to implement, seems to produce more efficient data structures
than those obtained using tools such as LSH and randomized projections. In addition,
[4] present conditional lower bounds for several different settings of the problem.
Our results We present a data structure for the (1 + ε, r)-approximate near-neighbor
problem using a bucketing method. We construct a relatively small set of curves I,
such that, given a query curve Q, if there exists some curve in C within distance r of
Q, then one of the curves in I must be very close to Q. The points of the curves in I
are chosen from a simple discretization of space, thus, while it is not surprising that we
get the best query time, it is surprising that we achieve a better space bound.Moreover,
while the analysis of the space bounds is rather involved, the implementation of our
data structures remain simple in practice.

See Table 1 for a summary of our results. In the table, we do not state our result
for the general �p,2-distance. Instead, we state our results for the two most important
cases, i.e. DFD and DTW, and compare themwith previous work. Note that our results
substantially improve the current state of the art for any p ≥ 1. In particular, we remove
the exponential dependence on m in the query bounds and significantly improve the
space bounds.

123

Algorithmica

Our results for the asymmetric setting, where the query curve Q has complexity
k � m, are summarized in Table 2. We show that in the asymmetric setting for DFD,
our data structure can be slightly modified in order to achieve query time and storage
space independent of m. Moreover, the storage space and query time matches those
of the symmetric setting, by replacing m with k.

We also apply ourmethods to an approximation version of range counting for curves
(for the general �p,2 distance) and achieve bounds similar to those of our ANNC data
structure. Moreover, at the cost of an additional O(n)-factor in the space bound, we
can also answer the corresponding approximation version of range searching, thus
answering a question of Afshani and Driemel [1], with respect to DFD.

We note that our approach with obvious modifications works also in a dynamic
setting, that is, we can construct an efficient dynamic data structure for ANNC as well
as for other related problems such as range counting and range reporting for curves.

Another significant advantage of our approach is that, unlike some of the previous
solutions, our data structure always returns an answer, and never returns a curve at
distance greater than (1 + ε)r from the query curve, i.e., there are no false positives.
This is an important property of our solution, due to the fact that verifying the validity
of the answer (i.e., computing the distance between two curves) cannot be done in
strongly subquadratic time (assuming SETH, see [7]), which is already more than our
query time (for d < m).

Summary of previous and current results for the asymmetric approximate near-
neighbor data structure for curves. All the results in the table are w.r.t. DFD. Setting:
the input consists of n curves with m points each, the query curve is of length k, the
approximation ratio is 1 + ε for ε ∈ (0, 1), and our data structures always succeed.
Historic note: [12] is a subsequent work to the first version of this paper. In this version
we also apply our counting techniques to the asymmetric cases

1.1 RelatedWork

De Berg, Gudmundsson, and Mehrabi [9] described a dynamic data structure for
approximate nearest neighbor for curves (which can also be used for other types of
queries such as range reporting), under the (continuous) Fréchet distance. Their data

structure uses n · O
(1

ε

)2m
space and has O(m) query time, but with an additive error

of ε · reach(Q), where reach(Q) is the maximum distance between the start vertex
of the query curve Q and any other vertex of Q. Furthermore, their query procedure
might fail when the distance to the nearest neighbor is relatively large.

Afshani and Driemel [1] studied (exact) range searching under both the discrete
and continuous Fréchet distance. In this problem, the goal is to preprocess C such
that given a query curve Q of length mq and a radius r , all the curves in C that are
within distance r from Q can be found efficiently. For DFD, their data structure uses

O(n(log log n)m−1) space and has O(n1− 1
d · logO(m) n · mO(d)

q) query time, where
mq is limited to logO(1) n. Additionally, they provide a lower bound in the pointer
model, stating that every data structure with Q(n) + O(k) query time, where k is
the output size, has to use roughly �

(
(n/Q(n))2

)
space in the worst case (even for

123

Algorithmica

Ta
bl
e
1

O
ur

ap
pr
ox

im
at
e
ne
ar
-n
ei
gh

bo
r
da
ta
st
ru
ct
ur
e
un

de
r
D
FD

an
d
D
T
W

co
m
pa
re
d
to

th
e
pr
ev
io
us

re
su
lts

Sp
ac
e

Q
ue
ry

A
pp

ro
x.

C
om

m
en
ts

D
FD

O
(m

2
|X

|)m
1−

o(
1)

·n
2+

o(
1)

(m
lo
g

n)
O

(1
)

O
(1

)
de
te
rm

in
is
tic

[1
9]

O
(2

4m
d

n
lo
g

n)
O

(2
4m

d
lo
g

n)
O

(1
)

ra
nd
om

iz
ed
,u

si
ng

L
SH

,d
=

O
(1

)
[1
3]

O
(n

lo
g

n
+

m
n)

O
(m

lo
g

n)
O

(m
)

Õ
(n

)
·(2

+
d

lo
g

m
)O

(m
O

(
1 ε

)
d
lo
g(

1 ε
))

Õ
(d

m
O

(
1 ε
)
·2

4m
lo
g

n)
1

+
ε

ra
nd

om
iz
ed

[1
4]

n
·O

(
1 ε
)m

d
O

(m
d
)

1
+

ε
de
te
rm

in
is
tic

(r
an
do

m
iz
ed

co
ns
tr
uc
tio

n)
,T

he
or
em

8

D
T
W

O
(n

lo
g

n
+

m
n)

O
(m

lo
g

n)
O

(m
)

ra
nd
om

iz
ed
,u

si
ng

L
SH

,d
=

O
(1

)
[1
3]

Õ
(n

)
·1 ε

O
(m

d
)

Õ
(d

·2
4m

lo
g

n)
1

+
ε

ra
nd

om
iz
ed

[1
4]

n
·O

(
1 ε
)m

(d
+1

)
O

(m
d
)

1
+

ε
de
te
rm

in
is
tic

(r
an
do

m
iz
ed

co
ns
tr
uc
tio

n)
,T

he
or
em

14

123

Algorithmica

Ta
bl
e
2

Su
m
m
ar
y
of

pr
ev
io
us

an
d
cu
rr
en
tr
es
ul
ts
fo
r
th
e
as
ym

m
et
ri
c
ap
pr
ox

im
at
e
ne
ar
-n
ei
gh

bo
r
da
ta
st
ru
ct
ur
e
fo
r
cu
rv
es
.A

ll
th
e
re
su
lts

in
th
e
ta
bl
e
ar
e
w
.r.
t.
D
FD

.S
et
tin

g:
th
e
in
pu

tc
on

si
st
s
of

n
cu
rv
es

w
ith

m
po

in
ts
ea
ch
,t
he

qu
er
y
cu
rv
e
is
of

le
ng

th
k,

th
e
ap
pr
ox

im
at
io
n
ra
tio

is
1

+
ε
fo
r
ε

∈(
0,

1)
,a
nd

ou
r
da
ta
st
ru
ct
ur
es

al
w
ay
s
su
cc
ee
d

Sp
ac
e

Q
ue
ry

D
et
er
m
in
is
tic

co
ns
tr
uc
tio

n?
R
ef
er
en
ce
s

n
·(

O
(

kd
3/
2

ε
)kd

)
O

(k
d
)

N
o

[1
2]

n
·(

O
(

kd
3/
2

ε
)kd

+1
)

O
(

k2
d
5/
2

ε
(l
og

n
+

kd
lo
g(

kd ε
))

)
Y
es

[1
2]

n
·O

(
1 ε
)kd

O
(k

d
)

N
o

T
he
or
em

10

n
·O

(
1 ε
)kd

O
(k

d
lo
g(

nk
d

ε
))

Y
es

T
he
or
em

24

H
is
to
ri
c
no
te
:[
12

]
is
a
su
bs
eq
ue
nt

w
or
k
to

th
e
fir
st
ve
rs
io
n
of

th
is
pa
pe
r.
In

th
is
ve
rs
io
n
w
e
al
so

ap
pl
y
ou
r
co
un
tin

g
te
ch
ni
qu
es

to
th
e
as
ym

m
et
ri
c
ca
se
s.

123

Algorithmica

mq = 1). Afshani and Driemel conclude their paper by asking whether more efficient
data structures might be constructed if one allows approximation.

De Berg, Cook IV, and Gudmundsson [8], considered the following range counting
problem under the continuous Fréchet distance. Given a polygonal curve C with m
vertices, they show how to preprocess it into a data structure of size O(k ·polylog(m)),
so that, given a query segment s, one can return a constant approximation of the number
of subcurves of C that lie within distance r of s in O(m√

k
· polylog(m)) time, where k

is a parameter between m and m2.
Aronov et al. [2]managed to obtain practical bounds for two cases of the asymmetric

(1 + ε, r)-ANNC under DFD: (i) when Q is a line segment (i.e., k = 2), or (ii) when
C consists of line segments (i.e., m = 2). The bounds on the size of the data structure
and query time are nearly linear in the size of the input and query curve, respectively.
Specifically, for the casewhere k = 2, they achieve query time O(log4(n

ε
)) and storage

space O(n 1
ε4

log4(n
ε
)). They also provide efficient data structures for several other

variants of the problem: the (exact) NNC where �∞ is used for interpoint distances,
and the case where the location of the input curves is only fixed up to translation.

1.2 Technical Ideas

We use a discretization of the space, by considering a d-dimensional uniform grid
with edge length εr√

d
. The main ingredient in our data structure is then a relatively

small set I of curves defined by grid points, which represents all possible queries. For
each curve in I we store an index of a close enough curve from the input set C. Given
a query Q sufficiently close to some curve in C, we find a representative Q′ in I by
simply rounding Q’s vertices and return the index of the curve stored for Q′.

Given a point x ∈ R
d , the number of grid points that are within distance (1 + ε)r

from x is bounded by O(1
ε
)d (Corollary 6). Thus, given a curve C of length m, the

total number of grid points that are within distance (1 + ε)r from one of its vertices
is m · O(1

ε
)d . Naively, the number of curves needed to represent all possible queries

of length m within distance r of C is bounded by the number of ways to choose m
points with repetitions from a set of grid points of size m · O(1

ε
)d , which is bounded

by mm · O(1
ε
)md . This infeasible bound on the storage space might be the reason why

more sophisticated solutions for ANNC have been suggested throughout the years.
One of the main technical contributions of this paper is an analysis leading to a

significantly better bound, if we store only candidate curves that are within distance
(1+ ε)r from C . Actually, in Sect. 3 we show that for the case of DFD, it is sufficient
to store a set of representative curves of size only O(1

ε
)md for each input curve. The

basic idea is to bound the number of representatives that can be obtained by some
fixed alignment between C and the candidate curve (see Claim 7).

For the general case of �p,2-distance (including DTW), we are minimizing the sum
of distances instead of the maximum distance (as in DFD). Thus, we have to use a
denser grid (with edge length εr

(2m)1/p
√

d
), and the situation becomesmore complicated.

First, unlike DFD, the triangle inequality does not hold for �p,2-distance in general
(including DTW). Second, since DFD is a min-max measure, the choice of different

123

Algorithmica

vertices for a representative curve is “independent” in a sense, whereas for �p,2-
distance in general, the choice of different vertices depends on their sum of distances
from the input curve. Using more careful counting arguments and analysis of the
alignment between two curves, we are able to show that in this case the number of
representative curves that our data structure has to store per input curve is bounded by
O(1

ε
)m(d+1) (see Claim 12).

To store the setI we simply use a dictionary,which can be implemented using a hash
table and guarantees a query time linear in the size of the query. To obtain a fully deter-
ministic solution, one can use a search tree instead. However, a naive implementation
using a binary search tree results in an additional factor of O(log |I|) = O(md log(n

ε
))

to the query time, i.e., in a query time of O(m2d2 log(n
ε
)). We show how to implement

the dictionary using a prefix tree, exploiting the fact that the vertices of the curves in
I are from a relatively small set of grid points, which improves the query time to
O(md log(nmd

ε
)).

For the asymmetric setting (where the length of a query is k � m), we use sim-
plifications of the input curves in order to obtain bounds that are independent of m.
Given a curve C of length m, a simplification � of C is a curve of length k � m
that is relatively close to C . Simplifications were used in order to provide approximate
solutions in several asymmetric versions of problems on curves, such as clustering
[3], and distance oracles [10, 12].

By the triangle inequality for DFD, every query curve Q within distance r from an
input curve C is at distance at most 2r from the simplification � (where � is within
distance r fromC). Thus, it is enough to prepare for query curves at distance at most 2r
from�, which follows from previous arguments. Note that the query time and storage
space are independent of m. For the asymmetric setting under general �p,2-distance,
the situation again becomes more complicated. First, we present an algorithm that
computes the closest (vertex-restricted) simplification of length k to a given curve of
lengthm under the �p,2-distance. In order to adapt our data structure to the asymmetric
setting, we need to increase the allowed distance between a simplification and a rep-
resentative curve by a factor of k1/p, for the triangle inequality to work. The counting
arguments that we use for the symmetric case yield a bound of O(k1/p

ε
)k(d+1) on the

storage space. In Sect. 6.2, we provide stronger counting arguments, which enable us
to remove the k1/p factor from the base of the exponent. The main idea is to use the
simplification in order to divide the input curve into O(k) compact subsequences (see
Claim 18).

2 Preliminaries

To simplify the presentation, we assume throughout the paper that all the input curves
have exactly the same size, m, and all the query curves have exactly the same size,
eitherm or k, depending onwhether we are considering the standard or the asymmetric
version. This assumption can be easily removed (see Appendix B).

Let C be a set of n curves, each consisting of m points in R
d , and let δ be some

distance measure for curves.

123

Algorithmica

Problem 1 ((1+ε)-approximate nearest-neighbor for curves) Given a parameter 0 <

ε ≤ 1, preprocess C into a data structure that given a query curve Q, returns a curve
C ′ ∈ C, such that δ(Q, C ′) ≤ (1 + ε) · δ(Q, C), where C is the curve in C closest to
Q.

Problem 2 ((1 + ε, r)-approximate near-neighbor for curves) Given a parameter r
and 0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, if
there exists a curve Ci ∈ C such that δ(Q, Ci) ≤ r , returns a curve C j ∈ C such that
δ(Q, C j) ≤ (1 + ε)r .

Problem 3 (Asymmetric (1 + ε, r)-approximate near-neighbor for curves) Given
parameters r ,k, and 0 < ε ≤ 1, preprocess C into a data structure that given a query
curve Q of length k, if there exists a curve Ci ∈ C such that δ(Q, Ci) ≤ r , returns a
curve C j ∈ C such that δ(Q, C j) ≤ (1 + ε)r .

Curve alignment Given two integers m1, m2, let τ := 〈(i1, j1), . . . , (it , jt)〉 be a
sequence of pairs where i1 = j1 = 1, it = m1, jt = m2, and for each 1 ≤ k < t
we have (ik+1, jk+1) ∈ {(ik + 1, jk), (ik, jk + 1), (ik + 1, jk + 1)}. We call such a
sequence τ an alignment w.r.t. two curves of lengths m1 and m2, respectively.
Let P = (p1, . . . , pm1) and Q = (q1, . . . , qm2) be two curves of lengths m1 and m2,
respectively, in R

d . We say that an alignment τ w.r.t. P and Q matches pi and q j if
(i, j) ∈ τ .
Discrete Fréchet distance (DFD) The Fréchet cost of an alignment τ w.r.t. P and Q
is σd F (τ (P, Q)) := max(i, j)∈τ ‖pi − q j‖2. The discrete Fréchet distance is defined
over the set T of all alignments as

dd F (P, Q) = min
τ∈T

σd F (τ (P, Q)).

Dynamic time warping (DTW) The time warping cost of an alignment τ w.r.t. P and
Q is σDT W (τ (P, Q)) := ∑

(i, j)∈τ ‖pi − q j‖2. The DTW distance is defined over the
set T of all alignments as

dDT W (P, Q) = min
τ∈T

σDT W (τ (P, Q)).

�p,2-distance for curves The �p,2 − cost of an alignment τ w.r.t. P and Q is

σp,2(τ (P, Q)) :=
(∑

(i, j)∈τ ‖pi − q j‖p
2

)1/p
. The �p,2-distance between P and Q is

defined over the set T of all alignments as

dp,2(P, Q) = min
τ∈T

σp,2(τ (P, Q)).

Notice that �p,2-distance is a generalization of DFD and DTW, in the sense that
σd F = σ∞,2 and dd F = d∞,2, σDT W = σ1,2 and dDT W = d1,2. Also note that
DFD satisfies the triangle inequality, but DTW and �p,2-distance (for p
= ∞) do not
(see Sect. 5 for details).

123

Algorithmica

Emiris and Psarros [14] showed that the number of all possible alignments of two
curves is in O(m · 22m). We reduce this bound by counting only alignments that can
determine the �p,2-distance between two curves.1 More formally, let τ be an alignment.
If there exists an alignment τ ′ such that τ ′ ⊂ τ , then clearly σp,2(τ

′(P, Q)) ≤
σp,2(τ (P, Q)), for any 1 ≤ p ≤ ∞ and for any two curves P and Q. In this case, we
say that τ cannot determine the �p,2-distance between two curves.

Lemma 4 The number of different alignments that can determine the �p,2-distance

between two m-curves (for any 1 ≤ p ≤ ∞) is at most O(2
2m√
m

).

Proof Let τ = 〈(i1, j1), . . . , (it , jt)〉 be an alignment. Notice that m ≤ t ≤ 2m − 1.
By definition, τ has 3 types of (consecutive) subsequences of length two:

(i) 〈(ik, jk), (ik + 1, jk)〉,
(ii) 〈(ik, jk), (ik, jk + 1)〉, and
(iii) 〈(ik, jk), (ik + 1, jk + 1)〉.
Denote by T1 the set of all alignments that do not contain any subsequence of type

(iii). Then, any τ1 ∈ T1 is of length exactly 2m − 1. Moreover, τ1 contains exactly
2m − 2 subsequences of length two, of which m − 1 are of type (i) and m − 1 are of
type (ii). Therefore, |T1| = (2m−2

m−1

) = O(2
2m√
m

).

Assume that an alignment τ contains a subsequence of the form (ik, jk −
1), (ik, jk), (ik +1, jk), for some 1 < k ≤ t −1. Notice that removing the pair (ik, jk)
from τ results in a legal alignment τ ′, such that σp,2(τ

′(P, Q)) ≤ σp,2(τ (P, Q)),
for any 1 ≤ p ≤ ∞ and two curves P, Q. We call the pair (ik, jk) a redundant pair.
Similarly, if τ contains a subsequence of the form (ik − 1, jk), (ik, jk), (ik, jk + 1),
for some 1 < k ≤ t − 1, then the pair (ik, jk) is also a redundant pair. Therefore we
only care about alignments that do not contain any redundant pairs. Denote by T2 the
set of all alignments that do not contain a redundant pair, then any τ2 ∈ T2 contains at
least one subsequence of type (iii).

We claim that for any alignment τ2 ∈ T2, there exists a unique alignment τ1 ∈ T1.
Indeed, if we add the redundant pair (il , jl + 1) between (il , jl) and (il + 1, jl + 1)
for each subsequence of type (iii) in τ2, we obtain an alignment τ1 ∈ T1. Moreover,
since τ2 does not contain any redundant pairs, the reverse operation on τ1 results in
τ2. Thus we obtain |T2| ≤ |T1| = O(2

2m√
m

). ��
Points and balls Given a point x ∈ R

d and a real number R > 0, we denote by
Bd

p(x, R) the d-dimensional ball under the �p norm with center x and radius R, i.e.,
a point y ∈ R

d is in Bd
p(x, R) if and only if ‖x − y‖p ≤ R, where ‖x − y‖p =

(∑d
i=1 |xi − yi |p

)1/p
. Let Bd

p(R) = Bd
p(0, R), and let V d

p (R) be the volume (w.r.t.

Lebesgue measure) of Bd
p(R), then

V d
p (R) = 2d	(1 + 1/p)d

	(1 + d/p)
Rd ,

1 Since our storage space is already in O(1ε)md , and m · 22m ≤ 32m is in O(1)md , we could have used
this larger upper bound. However, in Lemma 4 we show a tight upper bound on the number of relevant
alignments, which may be useful for other applications.

123

Algorithmica

where 	(·) is Euler’s Gamma function (an extension of the factorial function). For
p = 2 and p = 1, we get

V d
2 (R) = πd/2

	(1 + d/2)
Rd and V d

1 (R) = 2d

d! Rd .

Our approach consists of a discretization of the space using lattice points, i.e., points
from Z

d .

Lemma 5 The number of lattice points in the d-dimensional ball of radius R under
the �p norm (i.e., in Bd

p(R)) is bounded by V d
p (R + d1/p).

Proof With each lattice point z = (z1, z2, . . . , zd), zi ∈ Z, we match the d-
dimensional lattice cube C(z) = [z1, z1 + 1] × [z2, z2 + 1] × · · · × [zd , zd + 1].
Notice that z ∈ C(z), and the �p-diameter of a lattice cube is d1/p. Therefore, the
number of lattice points in the �d

p-ball of radius R is bounded by the number of lattice
cubes that are contained in a �d

p-ball with radius R + d1/p. This number is bounded
by V d

p (R + d1/p) divided by the volume of a lattice cube, which is 1d = 1. ��

3 Discrete Fréchet Distance (DFD)

Consider the infinite d-dimensional gridwith edge length εr√
d
. Given a point x inRd , by

rounding one can find in O(d) time the grid point x ′ closest to x , and
∥∥x − x ′∥∥

2 ≤ εr
2 .

Let G(x, R) denote the set of grid points that are contained in Bd
2 (x, R).

Corollary 6 |G(x, (1 + ε)r)| = O(1
ε
)d .

Proof We scale our grid so that the edge length is 1, hence we are looking for the
number of lattice points in Bd

2 (x, 1+ε
ε

√
d). By Lemma 5 we get that this number is

bounded by the volume of the d-dimensional ball of radius 1+ε
ε

√
d + √

d ≤ 3
√

d
ε

.
Using Stirling’s formula we conclude that

V d
2

(
3
√

d

ε

)

= π
d
2

	(d
2 + 1)

·
(
3
√

d

ε

)d

≤
(α

ε

)d
,

where α is a constant. For example, if d is even, then

V d
2

(
3
√

d

ε

)

= π
d
2

(d
2)! ·

(
3
√

d

ε

)d

≤ π
d
2√

2π(d/2)d/2+1/2e−d/2
·
(
3
√

d

ε

)d

≤
(
12.4

ε

)d

= O

(
1

ε

)d

.

��

123

Algorithmica

Denote by pi
j the j’th point of Ci , and let Gi = ⋃

1≤ j≤m G(pi
j , (1 + ε)r) and

G = ⋃
1≤i≤n Gi , then by the above corollary we have |Gi | = m · O(1

ε
)d and |G| =

mn · O(1
ε
)d . Let Ii be the set of all curves Q = (x1, x2, . . . , xm) with points from Gi ,

such that dd F (Ci , Q) ≤ (1 + ε
2)r .

Claim 7 |Ii | = O(1
ε
)md and it can be computed in O(1

ε
)md time.

Proof Let Q ∈ Ii and let τ be an alignment with σd F (τ (Ci , Q)) ≤ (1+ ε
2)r . For each

1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ . In other words, jk is the
smallest index that is matched to k by the alignment τ . Since dd F (Ci , Q) ≤ (1+ ε

2)r ,
we have xk ∈ Bd

2 (pi
jk
, (1 + ε

2)r), for k = 1, . . . , m. This means that for any curve

Q ∈ Ii such that σd F (τ (Ci , Q)) ≤ (1 + ε
2)r , we have xk ∈ G(pi

jk
, (1 + ε

2)r), for
k = 1, . . . , m. By Corollary 6, the number of ways to choose a grid point xk from
G(pi

jk
, (1 + ε

2)r) is bounded by O(1
ε
)d .

We conclude that given an alignment τ , the number of curves Q with m points from
Gi such that σd F (τ (Ci , Q)) ≤ (1 + ε

2)r is bounded by O(1
ε
)md . Finally, by Lemma

4, the total number of curves in Ii is bounded by 22m · O(1
ε
)md = O(1

ε
)md .

To construct Ii we compute, for each of the O(1
ε
)md candidates, its discrete

Fréchet distance toCi . Thus, we construct Ii in total time O(1
ε
)md ·O(m2) = O(1

ε
)md .

(The latter equality is true, since clearly (α
ε
)md · O(m2) ≤ (cα

ε
)md , i.e., O(m2) ≤ cmd ,

where α is the constant from Corollary 6 and c > 1 is a sufficiently large constant.) ��

The data structure Denote I = ⋃
1≤i≤n Ii , so |I| ≤ n · O(1

ε
)md and we construct

I in total time n · O(1
ε
)md . Next, we would like to store the set I in a dictionary (a

hash table or a lookup table) D, such that given a query curve Q, one can find Q in
D (if it exists) in O(md) time. We use Cuckoo Hashing [23] to construct a (dynamic)
dictionary of linear space, constant worst-case query and deletion time, and constant
expected amortized insertion time. We insert the curves of I into the dictionary D as
follows. For each 1 ≤ i ≤ n and curve Q ∈ Ii , if Q /∈ D, insert Q into D, and set
C(Q) ← Ci (C(Q) holds the “answer” for Q). The storage space required for D is
O(|I|), and to construct it we perform |I| insertions and look-up operations which
take in total O(|I| · md) = O(|I|) expected time.
A deterministic construction using a prefix tree Another way to implement the dictio-
nary,which is also dynamic, simple, anddoes not require randomization at all, is using a
binary search tree.Assuming that comparing two curves (given their binary representa-
tions) requires O(md) time, the query time will be O(md log |I|) = O((md)2 log n

ε
).

Since there is a relatively small number of possible vertices (all the vertices are
points of the grid G) we can improve the query time to O(md log(nmd

ε
)) by using a

prefix tree instead of a search tree. For details, see Appendix A.
The query algorithm Let Q = (q1, . . . , qm) be the query curve. The query algorithm
is as follows: For each 1 ≤ k ≤ m find the grid point q ′

k (not necessarily from G)
closest to qk . This can be done in O(md) time by rounding. Then, search for the curve
Q′ = (q ′

1, . . . , q ′
m) in the dictionary D. If Q′ is in D, return C(Q′), otherwise, return

NO. The total query time is then O(md).

123

Algorithmica

Table 3 Comparing our ANN data structure to previous structures, for a fixed ε (say ε = 1/2)

m References Space Query Approx

log n [13] O(n4d+1 log n) Õ(n4d) d
√

d

[14] n�(d log n) Õ(dn4) 1 + ε

Theorem 8 nO(d) O(d log n) 1 + ε

O(1) [13] 2O(d)n log n 2O(d) · log n d
√

d

[14] d O(d) Õ(n) O(d log n) 1 + ε

Theorem 8 2O(d)n O(d) 1 + ε

Correctness Consider a query curve Q = (q1, . . . , qm). Assume that there exists a
curve Ci ∈ C such that dd F (Ci , Q) ≤ r . We show that the query algorithm returns a
curve C∗ with dd F (C∗, Q) ≤ (1 + ε)r .

Consider a point qk ∈ Q. Denote by q ′
k ∈ G the grid point closest to qk , and let

Q′ = (q ′
1, . . . , q ′

m). We have
∥∥qk − q ′

k

∥∥
2 ≤ εr

2 , so dd F (Q, Q′) ≤ εr
2 . By the triangle

inequality,

dd F (Ci , Q′) ≤ dd F (Ci , Q) + dd F (Q, Q′) ≤ r + εr

2
= (1 + ε

2
)r ,

so Q′ is in Ii ⊆ I. This means that D contains Q′ with a curve C(Q′) ∈ C such that
dd F (C(Q′), Q′) ≤ (1 + ε

2)r , and the query algorithm returns C(Q′). Now, again by
the triangle inequality,

dd F (C(Q′), Q) ≤ dd F (C(Q′), Q′) + dd F (Q′, Q) ≤ (1 + ε

2
)r + εr

2
= (1 + ε)r .

We obtain the following theorem (see Table 3).

Theorem 8 There exists a data structure for the (1 + ε, r)-ANNC under DFD, with
n · O(1

ε
)md space, n · O(1

ε
)md expected preprocessing time, and O(md) query time.

4 The Asymmetric Setting Under DFD

In this section,we showhow to easily adapt our data structure to the asymmetric setting,
by using simplifications of length at most k instead of the original input curves.

Bereg et al. [6] showed that given a curve C consisting of m points in 3D, and a
parameter r > 0, there is an algorithm that runs in O(m logm) time and returns a
simplification � with minimum number of vertices such that dd F (C,�) ≤ r . Their
algorithm generalizes to higher dimensions, using an approximation algorithm for the
minimum enclosing ball problem (see Kumar et al. [20]). In this section, we use the

123

Algorithmica

following generalization of their original approach ([6], Theorem 1). More details are
given in Sect. 8.

Lemma 9 Let C be a curve consisting of m points inRd . Given parameters k ≤ m, r >

0, and ε ∈ (0, 1], there is an algorithm that runs in O
(

d·m logm
ε

+ m · poly 1
"

)
time that

either returns a simplification � consisting of k points such that dd F (C,�) ≤ (1+ε)r ,
or declares that for every simplification � with k points, it holds that dd F (C,�) > r .

For each Ci ∈ C, using Lemma 9 with parameter ε = 1, we find a curve �i of
length k such that dd F (Ci ,�i) ≤ 2r . If we fail to find such a curve, then we can
ignore Ci , because it means that dd F (Q, Ci) > r for any curve Q of length k.

To reduce the space consumption of our data structure, we only store candidate
curves of length k that are close enough to the simplifications �i . However, since
the distance between the simplification �i and the input curve Ci could be up to 2r ,
storing the answers for the set of candidate curves that are within distance (1 + ε

2)r
from �i is not enough, because a query Q that is within distance (1 + ε)r from Ci

might be as far as (3 + ε)r from �i . Thus, instead, we insert into our data structure
all the curves that are within distance 4r from �i . This allows us to capture all query
curves that are within distance r from Ci .
The data structureWeconstruct our data structure for the original (symmetric) version,
with the followingmodifications. The set of input curves isP = {�1, . . . , �n} (instead
of C), and the radius parameter is 4r (instead of r), but the grid edge length remains
εr√

d
. In addition, we let I ′

i be the set of all curves Q with k points from Gi , such that

dd F (Q,�i) ≤ 4r , and Ii will be the set of all curves Q ∈ I ′
i such that dd F (Q, Ci) ≤

(1 + ε
2)r . We insert the curves in Ii into the database D as before: For each Q ∈ Ii ,

if Q /∈ D, insert Q into D and set C(Q) ← Ci .
Notice that using 4r instead of r , increases the ratio between the radius and the

grid edge length by only a factor of 4, and therefore the bound on |I ′
i | does not

change, except that m is replaced by k. Therefore, the bounds on the storage space
and query time are similar to those of the original data structure, where m is replaced
by k. Thus, the storage space is in n · O(1

ε
)kd and the query time is in O(kd). As for

the preprocessing time, we get an additional term of O(nmd logm) for computing
the simplifications �1, . . . ,�n . We also need to compute the distances dd F (Ci , Q)

in the construction of Ii , for 1 ≤ i ≤ n, which takes n · O(1
ε
)kd · O(mkd) =

nm · O(1
ε
)kd time in total (as kd ≤ 2kd). Thus the total expected preprocessing time

is O(nmd logm) + nm · O(1
ε
)kd = nm · (

O(d logm) + O(1
ε
)kd

)
.

Correctness Consider a query curve Q, and assume that there exists a curve Ci ∈ C
such that dd F (Ci , Q) ≤ r . Then, �i is a curve of length k and dd F (Ci ,�i) ≤ 2r .
As in the previous section, let Q′ be the curve computed by the query algorithm, then
dd F (Q′, Q) ≤ εr

2 . By the triangle inequality, we have dd F (Q′, Ci) ≤ dd F (Q′, Q) +
dd F (Q, Ci) ≤ (1 + ε

2)r , and

dd F (Q′,�i) ≤ dd F (Q′, Ci) + dd F (Ci ,�i) ≤ (1 + ε

2
)r + 2r ≤ 4r .

123

Algorithmica

Therefore our data structure contains Q′, and the query algorithm returns C(Q′),
where dd F (C(Q′), Q′) ≤ (1+ ε

2)r . Finally, again by the triangle inequality, we have

dd F (C(Q′), Q) ≤ dd F (C(Q′), Q′) + dd F (Q′, Q) ≤ (1 + ε

2
)r + εr

2
= (1 + ε)r .

We obtain the following theorem.

Theorem 10 There exists a data structure for the asymmetric (1+ ε, r)-ANNC under
DFD, with n · O(1

ε
)dk space, nm · (

O(d logm) + O(1
ε
)kd

)
expected preprocessing

time, and O(kd) query time.

5 �p,2-Distance of Polygonal Curves

For the near-neighbor problemunder the �p,2-distance,we use the samebasic approach
as in Sect. 3, but with two small modifications. The first is that we set the grid’s
edge length to εr

(2m)1/p
√

d
, and redefine G(x, R), Gi , and G, as in Sect. 3 but with

respect to the new edge length of our grid. The second modification is that we redefine
Ii to be the set of all curves Q = (x1, x2, . . . , xm) with points from G, such that
dp,2(Ci , Q) ≤ (1 + ε

2)r .
We assume without loss of generality from now and to the end of this section that

r = 1 (we can simply scale the entire space by 1/r), so the grid’s edge length is
ε

(2m)1/p
√

d
. The following corollary is analogous to Corollary 6.

Corollary 11 |G(x, R)| = O
(
1 + m1/p

ε
R
)d

.

Proof We scale our grid so that the edge length is 1, hence we are looking for the

number of lattice points in Bd
2 (x,

(2m)1/p
√

d
ε

R). By Lemma 5 we get that this number

is bounded by the volume of the d-dimensional ball of radius (1+ (2m)1/p

ε
R)

√
d. Using

Stirling’s formula we conclude,

V d
2

((
1 + (2m)1/p

ε
R

) √
d

)
= π

d
2

	(d
2 + 1)

·
((

1 + (2m)1/p

ε
R

) √
d

)d

= αd ·
(
1 + m1/p

ε
R

)d

where α is a constant (approximately 4.13 · 21/p). ��
In the following claim we bound the size of Ii , which, surprisingly, is independent

of p.

Claim 12 |Ii | = O(1
ε
)m(d+1) and it can be computed in O(1

ε
)m(d+1) time.

Proof Let Q = (x1, x2, . . . , xm) ∈ Ii , and let τ be an alignmentwithσp,2(τ (Ci , Q)) ≤
(1 + ε

2). For each 1 ≤ k ≤ m let jk be the smallest index such that (jk, k) ∈ τ . In
other words, jk is the smallest index that is matched to k by the alignment τ .

123

Algorithmica

Set Rk = ‖xk−pi
jk
‖2, thenwehave‖(R1, . . . , Rm)‖p ≤ σp,2(τ (Ci , Q)) ≤ (1+ ε

2).

Let αk =
⌈

m1/p

ε
Rk

⌉
. By triangle inequality,

‖(α1, α2, . . . , αm)‖p ≤ m1/p

ε
‖(R1, R2, . . . , Rm)‖p + m1/p

≤ m1/p

ε

(
1 + ε

2

)
+ m1/p <

(
2 + 1

ε

)
m1/p.

Clearly, xk ∈ Bd
2 (pi

jk
, αk

ε
m1/p).

We conclude that for each curve Q = (x1, x2, . . . , xm) ∈ Ii there exists an align-
ment τ such that σp,2(τ (Ci , Q)) ≤ 1 + ε

2 , and a sequence of integers (α1, . . . , αm)

such that ‖(α1, α2, . . . , αm)‖p ≤ (2 + 1
ε
)m1/p and xk ∈ Bd

2 (pi
jk
, αk

ε
m1/p), for

k = 1, . . . , m. Therefore, the number of curves in Ii is bounded by the multipli-
cation of three numbers:

1. The number of alignments that can determine the distance, which is at most 22m

by Lemma 4.
2. The number of ways to choose a sequence of m positive integers α1, . . . , αm such

that ‖(α1, α2, . . . , αm)‖p ≤ (2 + 1
ε
)m1/p, which is bounded by the number of

lattice points in Bm
p ((2 + 1

ε
)m1/p) (the m-dimensional �p-ball of radius (2 +

1
ε
)m1/p). By Lemma 5, this number is bounded by

V m
p ((2 + 1

ε
)m1/p + m1/p) ≤ V m

p (
4m1/p

ε
)

= 2m	(1 + 1/p)m

	(1 + m/p)

(
4m1/p

ε

)m

= O(
1

ε
)m ,

where the last equality follows as by Stirling’s formula mm/p

	(1+m/p)
= O(1)m .

3. The number of ways to choose a curve (x1, x2, . . . , xm), such that xk ∈
G(pi

jk
, αk

ε
m1/p), for k = 1, . . . , m. By Corollary 11, the number of grid points in

G(pi
jk
, αk

ε
m1/p) is O(1+ αk)

d , so the number of ways to choose (x1, x2, . . . , xm)

is at most �m
k=1O(1 + αk)

d = O(1)md
(
�m

k=1(1 + αk)
)d . By the inequality of

arithmetic and geometric means we have

(
�m

k=1(1 + αk)
p)1/p ≤

(∑m
k=1(1 + αk)

p

m

)m/p

=
(‖(1 + α1, . . . , 1 + αm)‖p

m1/p

)m

≤
(‖1‖p + ‖(α1, . . . , αm)‖p

m1/p

)m

≤
(

m1/p + (2 + 1
ε
)m1/p

m1/p

)m

= O(
1

ε
)m,

123

Algorithmica

so �m
k=1O(1 + αk)

d = O(1)md O(1
ε
)md = O(1

ε
)md .

Finally, |Ii | ≤ 22m · O(1
ε
)m · O(1

ε
)md ≤ O(1

ε
)m(d+1). ��

The data structure and query algorithm are similar to those we described for DFD,
and the size of Ii and I is roughly the same (here there is an additional O(1

ε
)m factor

in the space bound). Therefore, the query time, storage space, and preprocessing time
are roughly similar, but we still need to show that the algorithm is correct.
Correctness Consider a query curve Q = (q1, . . . , qm). Assume that there exists a
curveCi ∈ C such that dp,2(Ci , Q) ≤ 1.Wewill show that the query algorithm returns
a curve C∗ with dp,2(C∗, Q) ≤ 1 + ε.

Consider a point qk ∈ Q. Denote by q ′
k ∈ G the grid point closest to qk , and let

Q′ = (q ′
1, . . . , q ′

m). We have ‖qk − q ′
k‖2 ≤ ε

2(2m)1/p . Let τ be an alignment such that
the �p,2-cost of τ w.r.t.Ci and Q is atmost 1. Unlike the Fréchet distance, �p,2-distance
for curves does not satisfy the triangle inequality. However, by the triangle inequality
under �2 and �p, we get that the �p,2-cost of τ w.r.t. Ci and Q′ is

σp,2(τ (Ci , Q′)) =
⎛

⎝
∑

(j ,t)∈τ

‖pi
j − q ′

t ‖p
2

⎞

⎠

1/p

≤
⎛

⎝
∑

(j ,t)∈τ

(
‖pi

j − qt ‖2 + ‖qt − q ′
t ‖2

)p

⎞

⎠

1/p

≤
⎛

⎝
∑

(j ,t)∈τ

‖pi
j − qt ‖p

2

⎞

⎠

1/p

+
⎛

⎝
∑

(j ,t)∈τ

‖qt − q ′
t ‖p

2

⎞

⎠

1/p

≤ 1 +
(
2m

(
ε

2(2m)1/p

)p)1/p

= 1 + ε

2
.

So dp,2(Ci , Q′) ≤ 1 + ε
2 , and thus Q′ is in Ii ⊆ I. This means that D contains

Q′ with a curve C(Q′) ∈ C such that dp,2(C(Q′), Q′) ≤ 1 + ε
2 , and the query

algorithm returns C(Q′). Now, again by the same argument (using an alignment with
�p,2-cost at most 1 + ε

2 w.r.t. C(Q′) and Q′), we get that dp,2(C(Q′), Q) ≤ 1 + ε
2 +

(
2m

(
ε

2(2m)1/p

)p)1/p = 1 + ε.

We obtain the following theorem.

Theorem 13 There exists a data structure for the (1+ε, r)-ANNC under �p,2-distance,
with n · O(1

ε
)m(d+1) space, n · O(1

ε
)m(d+1) expected preprocessing time, and O(md)

query time.

As mentioned in the preliminaries section, the DTW distance between two curves
equals to their �1,2-distance, and therefore we obtain the following theorem.

Theorem 14 There exists a data structure for the (1 + ε, r)-ANNC under DTW, with
n · O(1

ε
)m(d+1) space, n · O(1

ε
)m(d+1) expected preprocessing time, and O(md) query

time.

6 The Asymmetric Setting Under �p,2-distance

In Sect. 4, we strongly rely on the fact that DFD satisfies the triangle inequality, in
order to provide a data structure with storage space independent of m. However, the

123

Algorithmica

general �p,2 distance does not satisfy the triangle inequality, not even up to a constant
factor. Lemire [21] proved the following weak version of the triangle inequality for
�p,2 distance, and showed it to be tight: For any three curves A, B, C of length k, it
holds that dp,2(A, B) ≤ k1/p

(
dp,2(A, C) + dp,2(C, B)

)
.

Nonetheless, in Sect. 5 we showed how to apply our approach to ANNC under the
general �p,2-distance. This was possible due to the fact that we always match Q′ to Q
in a “one-to-one” alignment, a special case where the triangle inequality does hold. In
our solution to the asymmetric case, we use the triangle inequality between�i ,Ci , and
Q, in which case we do not have a one-to-onematching. Therefore, our analysis for the
asymmetric Fréchet distance does not trivially apply to the �p,2-distance in general. In
this section we show how we can still adapt our algorithm to the asymmetric ANNC
under �p,2 distance. The storage space and query time is almost the same as in Theorem
13, where we replace m by k.

We begin by describing some important characterizations of curve alignments.
First, notice that a curve alignment τ = 〈(i1, j1), . . . , (it , jt)〉 can be viewed as a
bipartite graph on the vertices of the two curves. Moreover, we can assume that each
connected component in this graph is a star graph, i.e., a single vertex from the first
curve is connected to one or more vertices from the second curve, and vice versa.
Indeed, as we claimed in the proof of Lemma 4, if there exist pairs (or edges) (ik, jk −
1), (ik, jk), (ik +1, jk), then removing (ik, jk) from τ results in a legal curve alignment
with a smaller (or equal) cost. The following special type of curve alignment is crucial
in the construction and proof of our algorithm.
One-way alignment An alignment τ = 〈(i1, j1), . . . , (it , jt)〉 is a one-way alignment
if for any 1 ≤ s ≤ t , we have is = s. In other words, in the view of τ as a bipartite
graph, we get a set of stars such that all the centers are in the second curve, and thus
each index of the first curve appears in exactly one pair of τ .

Remark 15 Anice property of one-way alignments is that, while the triangle inequality
does not apply for �p,2 distance between curves in general, it does hold when the �p,2
distances between the curves are obtained by one-way alignments. See Claim 26 in
Appendix C for details.

6.1 Simplification Under �p,2-Distance

As for DFD, in order to construct a data structure with storage space independent ofm,
we will need to compute simplifications of length k for the input curves.2 The points in
a simplification can be arbitrary, but for the purpose of this section it is enough to use
vertex-restricted simplifications. A simplification � of a curve C is vertex-restricted
if the points of � are from the vertices of C , and follow the same ordering.

Lemma 16 Let C = (p1, . . . , pm) be a curve consisting of m points in R
d . Denote

by � the closest simplification to C with k points under the �p,2-distance, i.e. � =
argmin�,|�|=k dp,2(C,�). Then there exist a vertex-restricted simplification � of C
with k points such that dp,2(C,�) ≤ 2 · dp,2(C,�).

2 See [5] for a closely related more recent result on simplifications with bounded length.

123

Algorithmica

Proof Set � = (x1, . . . , xk), and let τ be an alignment such that dp,2(C,�) =
σp,2(τ (C,�)). We can assume that τ is a one-way alignment, as otherwise we can
remove points from � without increasing the distance to C . For 1 ≤ j ≤ k, let
A j = {i ∈ [m] | (i, j) ∈ τ } be the set of indices matched to j by τ . Let i j =
arg mint∈A j ‖pt − x j‖2. Note that for every i ∈ A j it holds that ‖pi − pi j ‖2 ≤
‖pi − x j‖2 + ‖x j − pi j ‖2 ≤ 2‖pi − x j‖2. Set � = (pi1, . . . , pik), so � is a vertex-
restricted simplification of C consisting of k points from C . It holds that

σp,2(τ (C,�)) =
⎛

⎝
k∑

j=1

∑

i∈A j

‖pi − x j‖p
2

⎞

⎠

1/p

≥
⎛

⎝
k∑

j=1

∑

i∈A j

1

2p ‖pi − pi j ‖p
2

⎞

⎠

1/p

= 1

2
σp,2(τ (C,�)) .

The lemma follows as dp,2(C,�) ≤ σp,2(τ (C,�)) ≤ 2σp,2(τ (C,�)) =
2dp,2(C,�). ��
Lemma 17 Given a curve C = (p1, . . . , pm) consisting of m points inRd , and param-
eters k < m, p ≥ 1, there exists an algorithm that runs in O(m3k + m2d) time and
computes a vertex-restricted simplification � of C with k points, such that dp,2(C,�)

is minimized.

Proof Weshowhow to compute� using a dynamic programming technique.We begin
by precomputing all the pairwise distances in C , such that for every i, j , we will have
a constant time access to ‖pi − p j‖p

2 . This takes O(m2d) time (ignoring the time it
takes to compute the p-power of a number).

We define O PT [i, j, x] as follows. Let C[1 : i] = (p1, . . . , pi), and let
�x

j = (pi1, . . . , pix) be a vertex-restricted simplification with x points from C[1 : j],
such that ix = j , and dp,2(C[1 : i],�x

j) is minimized. Then O PT [i, j, x] =
(

dp,2(C[1 : i],�x
j)

)p
. We compute O PT [i, j, x] for any 1 ≤ x ≤ k, x ≤ j ≤ m,

and x ≤ i ≤ m as follows.
First, for any 1 ≤ j ≤ m we have O PT [1, j, 1] = ‖p1 − p j‖p

2 , and for any 2 ≤
i ≤ m we have O PT [i, j, 1] = O PT [i − 1, j, 1]+ ‖pi − p j‖p

2 . Thus O PT [i, j, 1]
can be computed in O(m2) time for all 1 ≤ i ≤ m, 1 ≤ j ≤ m.

Next, we compute O PT [i, j, x] for all 2 ≤ x ≤ k, x ≤ j ≤ m, and x ≤ i ≤ m,
using the following formula, in O(m3k) time:

O PT [i, j, x] = ‖pi − p j ‖p
2 + min

{

min
x−1≤ j ′< j

O PT [i − 1, j ′, x − 1], O PT [i − 1, j, x]
}

.

Any alignment w.r.t. C[1 : i] and a simplification �x
j has to match pi and p j . Let

τ be an alignment such that σp,2(τ (C[1 : i],�x
j)) is minimized. If τ matches p j

to pi−1 then O PT [i, j, x] = ‖pi − p j‖p
2 + O PT [i − 1, j, x]. Otherwise, there

exists some x − 1 ≤ j ′ < j such that τ matches p j ′ to pi−1, and O PT [i, j, x] =
‖pi − p j‖p

2 + O PT [i − 1, j ′, x − 1].

123

Algorithmica

Finally, we return

min
1≤x≤k
x≤ j≤m

O PT [m, j, x],

which can be computed in O(mk) time.
Clearly, the vertex-restricted simplification � that minimizes dp,2(C,�), and the

corresponding alignment, can be found by backtracking in O(mk) time. ��

6.2 The Data Structure

Our data structure for the asymmetric case under �p,2-distance is very similar to the
asymmetric case under DFD, but, without the triangle inequality, we have to use more
involved counting arguments in order to achieve similar bounds.

Fix some p > 1 and assume w.l.o.g., as in Sect. 5, that r = 1. For every input
curve Ci , compute the optimal vertex-restricted simplification �i of Ci , with at most
k points, using Lemma 17 in O(m3k + m2d) time. Note that in addition we obtain
a one-way alignment τi for which dp,2(Ci ,�i) = σp,2(τi (Ci ,�i)). We can assume
that dp,2(Ci ,�i) ≤ 2, as otherwise we can just ignore Ci , since by Lemma 16 we get
that for every curve Q of length ≤ k, dp,2(Ci , Q) > 1.

We again construct our data structure for the original problem (for �p,2-distance),
but with the following modifications. The set of input curves is P = {�1, . . . , �n},
and the radius parameter is 7k1/p (the length of grid edges is still ε

(2m)1/p
√

d
). Now let

I ′
i be the set of all curves Q with k points from Gi , such that dp,2(Q,�i) ≤ 7k1/p. In

addition, let Ii be the set of all curves Q ∈ I ′
i such that dp,2(Q, Ci) ≤ 1 + ε

2 .
Correctness Consider a query curve Q = (q1, . . . , qk) such that dp,2(Q, Ci) ≤ 1, and
let Q′ = (q ′

1, . . . , q ′
k) be the grid curve that was computed by the query algorithm.

Following the same arguments as in Sect. 5, there exists an alignment τ such that
σp(τ (Q′, Ci)) ≤ 1 + ε

2 , and thus dp,2(Q′, Ci) ≤ 1 + ε
2 . We have that

dp,2(Q′,�i) ≤ (2k − 1)1/p · dd F (Q′,�i)

≤ (2k − 1)1/p · (
dd F (Q′, Ci) + dd F (Ci ,�i)

)

≤ (2k − 1)1/p · (
dp,2(Q′, Ci) + dp,2(Ci ,�i)

)

≤ (2k − 1)1/p ·
(
1 + ε

2
+ 2

)
· dp,2(Q, Ci) ≤ 7k1/p ,

where the first and third inequalities follow by the fact that for every x ∈ R
d , ‖x‖∞ ≤

‖x‖p ≤ d1/p · ‖x‖∞, and the second inequality follows by the triangle inequality of
discrete Fréchet distance. It follows that Q′ ∈ Ii . The query algorithm then returns a
curve C(Q′) such that dp,2(Q′, C(Q′)) ≤ 1 + ε

2 , and dp,2(Q, C(Q′)) ≤ 1 + ε.
Storage space A calculation using arguments similar to those in Sect. 5 (where
I ′

i is computed using the same algorithm, but with a radius multiplied by 7k1/p),

bounds the storage by O(1
ε
)k(d+1) · (

k · md
) k

p , and the preprocessing time by

123

Algorithmica

nm ·
(

O(m2k + md)) + O(1
ε
)k(d+1) · (

k · md
) k

p

)
only (we leave this as an exercise

for the diligent reader). Next, we provide a better counting argument and remove the
k1/p factor from the base of the exponent.

Fix an input curve Ci = (p1, . . . , pm), a simplification �i of length k, and a one-
way alignment τi such that dp,2(Ci ,�i) = σp,2(τi (Ci ,�i)) ≤ 2.We say that a subset
A ⊆ Ci is consecutive if it is of the form (ps, ps+1, . . . , pt), for some s, t ∈ [m].
Claim 18 The points of Ci can be partitioned into k′ ≤ 3k consecutive subsets
A1, . . . , Ak′ such that for every 1 ≤ s ≤ k′ there exists a center point ys for which
As ⊂ Bd

2 (ys,
2

k1/p).

Proof For any p j ∈ Ci , denote by π(p j) the single point in �i that is matched to p j

by τi . Let L = {p j ∈ Ci | ‖p j − π(p j)‖2 > 2
k1/p }, then |L| ≤ k, as otherwise we

have

σp,2(τi (Ci ,�i)) =
⎛

⎝
m∑

j=1

‖p j − π(p j)‖p
2

⎞

⎠

1/p

≥
⎛

⎝
∑

p j ∈L

‖p j − π(p j)‖p
2

⎞

⎠

1/p

>

(
k · 2

p

k

)1/p

= 2 ,

which is a contradiction.
We construct a set A of consecutive subsets A1, . . . , Ak′ and the corresponding

center points y1, . . . , yk′ as follows. First, for every 1 ≤ s′ ≤ k let Ãs′ = {p j ∈ Ci |
(j, s′) ∈ τi }. Then Ã1, . . . , Ãk is a set of consecutive subsets that partition Ci . For
every set Ãs′ , let Ãs′ ∩ L = {pi1 , . . . , pit }, and insert into A the partition of Ãs′ into
2t + 1 consecutive subsets A1

s′ , {pi1}, A2
s′ , {pi2}, . . . , At

s′ , {pit }, At+1
s′ . The number of

subsets in A is at most 2|L| + k ≤ 3k. For each subset As ∈ A, if it is a singleton
{p j } then we set ys = p j , otherwise, As = A�

s′ and we set ys to be the s′ point of �i .
Clearly, ‖p j − ys‖2 ≤ 2

k1/p for every p j ∈ As . ��
For each curve Ci ∈ C we can compute in O(m) time the set of at most 3k consec-

utive subsets A1, . . . , Ak′ and centers y1, . . . , yk′ from Claim 18.
Now, consider a curve Q = (x1, . . . , xk) ∈ Ii , and let τ be an alignment such

that σp,2(τ (Ci , Q)) ≤ 1 + ε
2 . For every 1 ≤ j ≤ k, let 1 ≤ c(j) ≤ m be the

smallest index such that (c(j), j) ∈ τ , and let 1 ≤ f (j) ≤ k′ be the index such that
pc(j) ∈ A f (j). Since the sets A1, . . . , Ak′ are consecutive and τ is an alignment, f is
a monotonically non-decreasing function from [k] to [k′]. It follows that the number
of possible functions f is equivalent to the number of ways to distribute k identical
balls into k′ distinct boxes, thus

(k′−1+k
k

)
<

(4k
k

) ≤ O(2)k .

Set R j = ‖x j − pc(j)‖2 and α j =
⌈

k1/p

ε
R j

⌉
. We have ‖(R1, . . . , Rk)‖p ≤

σp,2(τ (Ci , Q)) ≤ 1 + ε
2 . By the triangle inequality,

‖(α1, α2, . . . , αk)‖p ≤ ‖(k1/p

ε
R1 + 1, . . . ,

k1/p

ε
Rk + 1)‖p

123

Algorithmica

≤ k1/p

ε
‖(R1, . . . , Rk)‖p + k1/p ≤ k1/p

ε
(1 + 3

2
ε) .

The number of ways to choose such a sequence α1, . . . , αk of k positive integers is
bounded by the number of lattice points in Bk

p(
k1/p

ε
(1 + 3

2ε)) (the k-dimensional �p-

ball of radius k1/p

ε
(1 + 3

2ε)). By Lemma 5, this number is bounded by V k
p (k1/p

ε
(1 +

3
2ε) + k1/p) = O(1

ε
)k .

For every 1 ≤ j ≤ k we have ‖pc(j) − y f (j)‖2 ≤ 2
k1/p , and thus

‖x j − y f (j)‖2 ≤ ‖x j − pc(j)‖2 + ‖pc(j) − y f (j)‖2 ≤ α j
ε

k1/p
+ 2

k1/p
.

Therefore, once f and (α1, . . . , αk) are fixed, it is sufficient to count the number of

ways to choose a curve (x1, x2, . . . , xk) such that x j ∈ G
(

y f (j), α j
ε

k1/p + 2
k1/p

)
for

every 1 ≤ j ≤ k.
By Corollary 11, as we use the ε

m1/p grid, the number of grid points in

G
(

yc(j), α j
ε

k1/p + 2
k1/p

)
is O

(
1 + m1/p

ε

(
α j

ε
k1/p + 2

k1/p

))d ≤ O
(m

k

)d/p·(3
ε

+ α j
)d
.

Thus the number of ways to choose (x1, x2, . . . , xk) is at most O
(m

k

)dk/p

(
�k

j=1

(3
ε

+ α j
))d

. By the inequality of arithmetic and geometric means we have

�k
j=1

(
3

ε
+ α j

)
=

(
�k

j=1

(
3

ε
+ α j

)p)1/p

≤
(∑k

j=1(
3
ε

+ α j)
p

k

)k/p

≤
(

‖(3
ε
, . . . , 3

ε
)‖p + ‖(α1, . . . , αk)‖p

k1/p

)k

≤
(

3
ε

· k1/p + k1/p

ε
(1 + 3

2ε)

k1/p

)k

= O

(
1

ε

)k

.

It follows that for some fixed f and (α1, . . . , αk), the number of ways to choose
(x1, . . . , xk) is bounded by O(1

ε
)kd · (m

k

)kd/p.

We conclude that, |Ii | = O(2)k · O(1
ε
)k · (1

ε
)kd · (m

k

)kd/p = O(1
ε
)k(d+1) · (m

k

)kd/p,

and thus |I| = n · O(1
ε
)k(d+1) · (m

k

)kd/p.
Following the same lines as in the counting argument, an efficient implementation

of the preprocessing time is self evident.

Theorem 19 There exists a data structure for the Asymmetric (1+ ε, r)-ANNC under

dp,2, with n·O(1
ε
)k(d+1)·(m

k

)kd/p
space, nm·

(
O(m2k + md) + O(1

ε
)k(d+1) · (m

k

)kd/p
)

preprocessing time, and O(kd) query time.

123

Algorithmica

7 Approximate Range Counting

In the range counting problem for curves, we are given a set C of n curves, each
consisting of m points in d dimensions, and a distance measure for curves δ. The goal
is to preprocess C into a data structure that given a query curve Q and a threshold
value r , returns the number of curves that are within distance r from Q.

In this section we consider the following approximation version of range counting
for curves, in which r is part of the input. Note that by storing pointers to curves instead
of just counters, we can obtain a data structure for the approximate range searching
problem (at the cost of an additional O(n)-factor to the storage space).

Problem 20 [(1 + ε, r)-approximate range-counting for curves] Given a parameter r
and 0 < ε ≤ 1, preprocess C into a data structure that given a query curve Q, returns
the number of all the input curves whose distance to Q is at most r plus possibly
additional input curves whose distance to Q is greater than r but at most (1 + ε)r .

We construct the dictionary D (implemented as a dynamic hash table, or a prefix
tree) for the curves in I as in Sect. 5, as follows. For each 1 ≤ i ≤ n and curve Q ∈ Ii ,
if Q is not in D, insert it into D and initialize C(Q) ← 1. Otherwise, if Q is in D,
update C(Q) ← C(Q) + 1. Notice that C(Q) holds the number of curves from C
that are within distance (1 + ε

2)r to Q. Given a query curve Q, we compute Q′ as in
Sect. 5. If Q′ is in D, we return C(Q′), otherwise, we return 0.

Clearly, the storage space, preprocessing time, and query time are similar to those
in Sect. 5. We claim that the query algorithm returns the number of curves from C
that are within distance r to Q plus possibly additional input curves whose distance
to Q is greater than r but at most (1 + ε)r . Indeed, let Ci be a curve such that
dp,2(Ci , Q) ≤ r . As shown in Sect. 5 we get dp,2(Ci , Q′) ≤ (1 + ε

2)r , so Q′ is in Ii

and Ci is counted in C(Q′). Now let Ci be a curve such that dp,2(Ci , Q) > (1+ ε)r .
If dp,2(Ci , Q′) ≤ (1 + ε

2)r , then by a similar argument (switching the rolls of Q and
Q′) we get that dp,2(Ci , Q′) ≤ (1+ε)r , a contradiction. So dp,2(Ci , Q′) > (1+ ε

2)r ,
and thus Ci is not counted in C(Q′).

We obtain the following theorem.

Theorem 21 There exists a data structure for the (1 + ε, r)-approximate range-
counting for curves under �p,2-distance, with n · O(1

ε
)m(d+1) space, n log(n

ε
) ·

O(1
ε
)m(d+1) preprocessing time, and O(md log(nmd

ε
)) query time. (Under DFD, the

exponent in the bounds for the space and preprocessing time is md rather than
m(d + 1).)

8 Simplification in d-dimensions

The algorithm of Bereg et al. [6] receives as input a curve C consisting of m points
in R

3, and a parameter r > 0. In O(m logm) time, it returns a curve � such that
dd F (C,�) ≤ r , and � has the minimum number of vertices among all curves within
distance r fromC . The algorithm operates in a greedymanner, by repeatedly executing
Megiddo’s [22] minimum enclosing ball (MEB) algorithm for points in R

3, which
takes linear time.

123

Algorithmica

We generalize the algorithm of Bereg et al. for curves in Rd , by using an algorithm
presented by Kumar et al. [20] for approximated minimum enclosing ball (AMEB) in
R

d . Formally, given a set A of n points inRd and a parameter ε ∈ (0, 1], the goal is to
find an enclosing ball of A with radius r > 0, where the minimum enclosing ball of A
has radius at least r

1+ε
. The algorithm of [20] can find anAMEB in O(nd

ε
+ε−4.5 log 1

ε
)

time. In particular, given an additional parameter r > 0, this algorithm either returns
an enclosing ball of A with radius (1 + ε)r , or declares that the minimum enclosing
ball of A has radius larger than r .

Next, we describe our modified algorithm. Consider a curveC = (x1, . . . , xm), and
denote C[i, j] = (xi , . . . , x j). The following sub-procedure takes as input a curve A
and returns a point y and an index s, such that the ball with radius (1+ ε)r centered at
y covers the prefix A[1, s], and (if s < |A|) the minimum enclosing ball of A[1, s +1]
has radius larger than r .

1. By iterative probing, using an algorithm for AMEB, find some t such that A[1, 2t]
can be covered by a ball of radius (1+ ε)r , while A[1, 2t+1] cannot be covered by
a ball of radius r . If all the points in A can be enclosed by a single ball of radius
(1 + ε)r centered at y, simply return y and |A|.

2. By binary search, again using an algorithm for AMEB, find some s ∈ [2t , 2t+1)

such that A[1, s] can be covered by a ball of radius (1+ε)r , and A[1, s +1] cannot
be covered by a ball of radius r . Let y ∈ R

d be the center of this ball. Return y and
s.

Starting from the input A = C[1, m], repeat the above sub-procedure such that in each
step the input is the suffix of C that was not yet covered by the previous steps (i.e.
A[s + 1, m]). Let (y1, . . . , yq) be the sequence of output points.

Lemma 9 is an easy corollary of the following lemma.

Lemma 22 Let C be a curve consisting of m points in R
d . Given parameters r > 0,

and ε ∈ (0, 1], the algorithm above runs in O
(

d·m logm
ε

+ m · ε−4.5 log 1
ε

)
time and

returns a curve � = (y1, . . . , yq) such that dd F (C,�) ≤ (1+ ε)r . Furthermore, for
every curve �′ with less than q points, it holds that dd F (C,�′) > r .

Proof Westart by analyzing the running time for a single iteration of the sub-procedure,
when using the algorithm of [20] to find an AMEB. The total time for the first step of
the sub-procedure (finding t) is

t+1∑

i=1

O

(
2i · d

ε
+ ε−4.5 log

1

ε

)
= O

(
2t · d

ε
+ t · ε−4.5 log

1

ε

)
.

In the second step, there are O(t) executions of [20] on a set of size at most 2t+1, so
the total time for this step is t · O(2

t ·d
ε

+ ε−4.5 log 1
ε
).

Let mi be the length of the subcurve covered by the point yi that was found in
the i’th iteration of the sub-procedure. The total time spent for finding yi is therefore
logmi · O(

mi ·d
ε

+ ε−4.5 log 1
ε
), and the total running time of the algorithm is

123

Algorithmica

q∑

i=1

logmi · O

(
mi · d

ε
+ ε−4.5 log

1

ε

)
= O

(
d · m logm

ε
+ m · ε−4.5 log

1

ε

)
,

where we used the concavity of the log function, and the fact
∑q

i=1 mi = m.
Next we argue the correctness. Clearly, dd F (C,�) ≤ (1 + ε)r . Let s0 =

0, s1, . . . , sq = m be the sequence of indices (of vertices in C) found during the
execution of the algorithm, such that the ball of radius (1 + ε)r around yi covers
C[si−1 +1, si]. It follows by a straightforward induction that every curve �′ with less
that i points will be at distance greater than r from C[1, si−1 + 1]. The lemma now
follows. ��
Acknowledgements We wish to thank Boris Aronov for helpful discussions on the problems studied in
this paper.

Funding Arnold Filtser was partially supported by Grant 1042/22 from the Israel Science Foundation.
Omrit Filtser was supported by the Eric and Wendy Schmidt Fund for Strategic Innovation, by the Council
for Higher Education of Israel, and by Ben-Gurion University of the Negev. Matthew J. Katz was partially
supported by Grant 1884/16 from the Israel Science Foundation.

Appendix: A Deterministic Construction Using a Prefix Tree

When implementing the dictionary D as a hash table, the construction of the data
structure is randomized and thus in the worst case we might get higher prepeocessing
time. To avoid this, we can implement D as a prefix tree.

Appendix: A.1 Discrete Fréchet Distance

In this section we describe the implementation of D as a prefix tree in the case of
ANNC under DFD.

We can construct a prefix tree T for the curves in I, where any path in T from the
root to a leaf corresponds to a curve that is stored in it. For each 1 ≤ i ≤ n and curve
Q ∈ Ii , if Q /∈ T , insert Q into T , and set C(Q) ← Ci .

Each node v ∈ T corresponds to a grid point from G. Denote the set of v’s children
by N (v). We store with v a multilevel search tree on N (v), with a level for each
coordinate. The points in G are the grid points contained in nm balls of radius (1+ε)r .
Thus when projecting these points to a single dimension, the number of 1-dimensional

points is at most nm ·
√

d(1+ε)2r
εr = O(nm

√
d

ε
). So in each level of the search tree on

N (v) we have O(nm
√

d
ε

) 1-dimensional points, so the query time is O(d log(nmd
ε

)).
Inserting a curve of length m to the tree T takes O(md log(nmd

ε
)) time. Since T

is a compact representation of |I| = n · O(1
ε
)dm curves of length m, the number

of nodes in T is m · |I| = nm · O(1
ε
)dm . Each node v ∈ T contains a search tree

for its children of size O(d · |N (v)|), and ∑
v∈T |N (v)| = nm · O(1

ε
)dm so the

total space complexity is O(nmd) · O(1
ε
)md = n · O(1

ε
)md . Constructing T takes

O(|I| · md log(nmd
ε

)) = n log(nmd
ε

) · O(1
ε
)md time.

123

Algorithmica

Theorem 23 There exists a data structure for the (1 + ε, r)-ANNC under DFD, with
n · O(1

ε
)dm space, n · log(n

ε
) · O(1

ε
)md preprocessing time, and O(md log(nmd

ε
)) query

time.

Similarly, for the asymmetric case we obtain the following theorem.

Theorem 24 There exists a data structure for the asymmetric (1+ ε, r)-ANNC under
DFD, with n · O(1

ε
)dk space, nm log(n

ε
) · (O(d logm) + O(1

ε
)kd

)
preprocessing time,

and O(kd log(nkd
ε

)) query time.

Appendix: A.2 �p,2-Distance

For the case of ANNC under �p,2-distance, the total number of curves stored in the
tree T is roughly the same as in the case of DFD. We only need to show that for a
given node v of the tree T , the upper bound on the size and query time of the search
tree associated with it are similar.

The grid points corresponding to the nodes in N (v) are from n sets of m balls with
radius (1+ε).When projecting the grid points in one of the balls to a single dimension,

the number of 1-dimensional points is at most m1/p
√

d
ε

· (1 + ε), so the total number

of projected points is at most nm
1+ 1

p
√

d
ε

· (1 + ε).

Thus in each level of the search tree of v we have O(nm2
√

d
ε

) 1-dimensional points,
so the query time is O(d log(nmd

ε
)), and inserting a curve of length m into the tree

T takes O(md log(nmd
ε

)) time. Note that the size of the search tree of v remains
O(d · |N (v)|).

We conclude that the total space complexity is O(nm2
√

d
ε

) · O(1
ε
)m(d+1) = n ·

O(1
ε
)m(d+1), constructing T takes O(|I| · md log(nmd/ε)) = n log(n

ε
) · O(1

ε
)m(d+1)

time, and the total query time is O(md log(nmd
ε

)).

Theorem 25 There exists a data structure for the (1 + ε, r)-ANNC under �p,2-
distance, with n · O(1

ε
)m(d+1) space, n · log(n

ε
) · O(1

ε
)m(d+1) preprocessing time,

and O(md log(nmd
ε

)) query time.

Appendix: B Dealing with Query Curves and Input Curves of Varying
Size

Notice that if an input curve Ci has length t < m, then the size of the set of candidates
Ii (and I ′

i in the asymmetric case) can only decrease.
In addition, our assumption that all query curves are of length exactly k can be

easily removed by constructing k data structures D1, . . . ,Dk , where Di is our data
structure constructed for query curves of length i (instead of k), for 1 ≤ i ≤ k.
Clearly, the query time does not change. The storage space is multiplied by k, so for
the case of DFD we have storage space nk · O(1

ε
)kd , but k < 2kd , so the storage space

remains n · O(1
ε
)kd . Similarly, for the case of �p,2-distance we obtain storage space

of n · O(1
ε
)k(d+1) · (m

k

)kd/p.

123

Algorithmica

Appendix: C One-Way Alignments

Claim 26 Let A, B, C be three curves, and let τ1, τ2 be two one-way alignments such
that τ1 matches C to A and τ2 matches C to B. Then dp,2(A, B) ≤ σp,2(τ1(C, A)) +
σp,2(τ2(C, B)).

Proof Denote by kA, kB, kC the lengths of the curves A, B, C respectively. Consider
the following algorithm that constructs an alignment τ . For every 1 ≤ x ≤ kC , denote
by ix , jx the unique indexes such that (x, ix) ∈ τ1 and (x, jx) ∈ τ2. Add the pair
(ix , jx) to τ if it is not already there.

First, we need to show that τ = 〈(i1, j1), . . . , (it , jt)〉 is a valid alignment. Clearly,
(i1, j1) = (1, 1) because (1, 1) ∈ τ1 and (1, 1) ∈ τ2. Similarly, (it , jt) = (kA, kB)

because (kC , kA) ∈ τ1 and (kC , kB) ∈ τ2.
For any 1 ≤ s < t , consider the two consecutive pairs (is, js), (is+1, js+1) ∈ τ .

Let x1 be an index such that (x1, is) ∈ τ1 and (x1, js) ∈ τ2, and x2 an index such that
(x2, is+1) ∈ τ1 and (x2, js+1) ∈ τ2. Since τ1, τ2 are one-way alignments, we have
x1
= x2. Moreover, since the algorithm added (is, js) to τ before (is+1, js+1), we
have x1 < x2. This implies that is+1 ≥ is and js+1 ≥ js . Assume by contradiction
that is+1 > is + 1, and let x be the index such that (x, is + 1) ∈ τ1, then x1 < x < x2
and thus the algorithm adds a pair (is +1, j) for some index j after (is, js) and before
(is+1, js+1), a contradiction. So we have is ≤ is+1 ≤ is + 1, and by symmetric
arguments, js ≤ js+1 ≤ js + 1, and therefore τ is valid.

Using the triangle inequality for the �p norm, we get that

dp,2(A, B) ≤ σp,2(τ (A, B)) =
(∑

(i, j)∈τ

‖ai − b j‖p
2

)1/p

≤
(kC∑

x=1

‖aix − b jx ‖p
2

)1/p

≤
(kC∑

x=1

‖aix − cx‖p
2

)1/p +
(kC∑

x=1

‖cx − b jx ‖p
2

)1/p

= σp,2(τ1(C, A)) + σp,2(τ2(C, B)) . ��

References

1. Afshani, P., Driemel, A.: On the complexity of range searching among curves. In: Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans,
LA, USA, January 7-10, 2018, pp 898–917, (2018), https://doi.org/10.1137/1.9781611975031.58

2. Aronov, B., Filtser, O., Horton,M., Katz,M.J., Sheikhan, K.: Efficient nearest-neighbor query and clus-
tering of planar curves. In: Algorithms and Data Structures—16th International Symposium, WADS
2019, Edmonton, AB, Canada, August 5–7, 2019, Proceedings, pp 28–42 (2019), https://doi.org/10.
1007/978-3-030-24766-9_3

3. Buchin, K., Driemel, A., Gudmundsson, J., Horton,M., Kostitsyna, I., Löffler, M., Struijs, M.: Approx-
imating (k, l)-center clustering for curves. In: Proceedings of the Thirtieth Annual ACM-SIAM

123

https://doi.org/10.1137/1.9781611975031.58
https://doi.org/10.1007/978-3-030-24766-9_3
https://doi.org/10.1007/978-3-030-24766-9_3

Algorithmica

Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp
2922–2938, (2019), https://doi.org/10.1137/1.9781611975482.181

4. Bringmann, K., Driemel, A., Nusser, A., Psarros, I.: Tight bounds for approximate near neighbor
searching for time series under the Fréchet distance. In: Symposium on Discrete Algorithms, SODA
(2022)

5. Buchin,M.,Driemel,A., vanGreevenbroek,K., Psarros, I., Rohde,D.:Approximating length-restricted
means under dynamic time warping. In: Approximation and Online Algorithms—20th International
Workshop, WAOA, volume 13538, pp 225–253, (2022), https://doi.org/10.1007/978-3-031-18367-
6_12

6. Bereg, S., Jiang, M., Wang, W., Yang, B., Zhu, B.: Simplifying 3D polygonal chains under the discrete
Fréchet distance. In LATIN 2008: Theoretical Informatics, 8th Latin American Symposium, Búzios,
Brazil, April 7-11, 2008, Proceedings, pp 630–641, (2008), https://doi.org/10.1007/978-3-540-78773-
0_54

7. Bringmann, K.: Why walking the dog takes time: Fréchet distance has no strongly subquadratic algo-
rithms unless SETH fails. In: 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pp 661–670, 2014, https://doi.org/10.1109/
FOCS.2014.76

8. de Berg, M., Cook, A.F., IV., Gudmundsson, J.: Fast Fréchet queries. Comput. Geom. 46(6), 747–755
(2013). https://doi.org/10.1016/j.comgeo.2012.11.006

9. de Berg, M., Gudmundsson, J., Mehrabi, A. D.: A dynamic data structure for approximate proximity
queries in trajectory data. In: Proceedings of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, GIS 2017, Redondo Beach, CA, USA, November
7–10, 2017, pp 48:1–48:4, (2017), https://doi.org/10.1145/3139958.3140023

10. Driemel, A., Har-Peled, S.: Jaywalking your dog: Computing the Fréchet distance with shortcuts.
SIAM J. Comput. 42(5), 1830–1866 (2013). https://doi.org/10.1137/120865112

11. Driemel, A., Psarros, I.: ANN for time series under the Fréchet distance. In: A. Lubiw and M. R.
Salavatipour, editors, Algorithms and Data Structures—17th International Symposium, WADS 2021,
Virtual Event, August 9-11, 2021, Proceedings, volume 12808 of Lecture Notes in Computer Science,
pp 315–328. Springer, (2021), https://doi.org/10.1007/978-3-030-83508-8_23

12. Driemel, A., Psarros, I., Schmidt, M.: Sublinear data structures for short Fréchet queries. CoRR,
abs/1907.04420, 2019, arXiv:1907.04420

13. Driemel, A., Silvestri, F.: Locality-sensitive hashing of curves. In Proceedings of the 33rd International
Symposium on Computational Geometry, volume 77, pp 37:1–37:16, Brisbane, Australia, July 2017.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, https://doi.org/10.4230/LIPIcs.SoCG.2017.37

14. Emiris, I.Z., Psarros, I.: Products of Euclidean metrics, applied to proximity problems among curves:
unified treatment of discrete Fréchet and dynamic time warping distances. ACM Trans. Spatial Algo-
rithms Syst. 6(4), 27:1-27:20 (2020). https://doi.org/10.1145/3397518

15. Filtser, A., Filtser, O., Katz, M. J.: Approximate nearest neighbor for curves—simple, efficient, and
deterministic. In: A. Czumaj, A. Dawar, and E. Merelli, editors, 47th International Colloquium on
Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Vir-
tual Conference), volume 168 of LIPIcs, pages 48:1–48:19. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020, https://doi.org/10.4230/LIPIcs.ICALP.2020.48

16. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards removing the curse of
dimensionality. Theory Comput. 8(1), 321–350 (2012). https://doi.org/10.4086/toc.2012.v008a014

17. Har-Peled, S., Kumar, N.: Approximate nearest neighbor search for low dimensional queries. In:
D. Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, pp 854–867. SIAM,
2011, https://doi.org/10.1137/1.9781611973082.67

18. Indyk, P.: High-dimensional computational geometry. PhD thesis, Stanford University, 2000
19. Indyk, P.: Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In:

Proceedings of the 8th Symposium on Computational Geometry, pp 102–106, Barcelona, Spain, June
2002. ACM Press, https://doi.org/10.1145/513400.513414

20. Kumar, P., Mitchell, J. S. B., Yildirim, E. A.: Comuting core-sets and approximate smallest enclosing
hyperspheres in high dimensions. In: Proceedings of the Fifth Workshop on Algorithm Engineering
and Experiments, Baltimore, MD, USA, January 11, 2003, pp 45–55, (2003), https://doi.org/10.1145/
996546.996548

123

https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1007/978-3-031-18367-6_12
https://doi.org/10.1007/978-3-031-18367-6_12
https://doi.org/10.1007/978-3-540-78773-0_54
https://doi.org/10.1007/978-3-540-78773-0_54
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1016/j.comgeo.2012.11.006
https://doi.org/10.1145/3139958.3140023
https://doi.org/10.1137/120865112
https://doi.org/10.1007/978-3-030-83508-8_23
http://arxiv.org/abs/1907.04420
https://doi.org/10.4230/LIPIcs.SoCG.2017.37
https://doi.org/10.1145/3397518
https://doi.org/10.4230/LIPIcs.ICALP.2020.48
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1137/1.9781611973082.67
https://doi.org/10.1145/513400.513414
https://doi.org/10.1145/996546.996548
https://doi.org/10.1145/996546.996548

Algorithmica

21. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recogn.
42(9), 2169–2180 (2009). https://doi.org/10.1016/j.patcog.2008.11.030

22. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1), 114–127
(1984). https://doi.org/10.1145/2422.322418

23. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004). https://doi.org/10.1016/
j.jalgor.2003.12.002

24. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory
and Practice (neural Information Processing). The MIT press, Cambridge (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1016/j.patcog.2008.11.030
https://doi.org/10.1145/2422.322418
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002

	Approximate Nearest Neighbor for Curves: Simple, Efficient, and Deterministic
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Technical Ideas

	2 Preliminaries
	3 Discrete Fréchet Distance (DFD)
	4 The Asymmetric Setting Under DFD
	5 ellp,2-Distance of Polygonal Curves
	6 The Asymmetric Setting Under ellp,2-distance
	6.1 Simplification Under ellp,2-Distance
	6.2 The Data Structure

	7 Approximate Range Counting
	8 Simplification in d-dimensions
	Acknowledgements
	Appendix: A Deterministic Construction Using a Prefix Tree
	Appendix: A.1 Discrete Fréchet Distance
	Appendix: A.2 ellp,2-Distance

	Appendix: B Dealing with Query Curves and Input Curves of Varying Size
	Appendix: C One-Way Alignments
	References

