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Abstract
We investigate for which metric spaces the performance of distance labeling and of
�∞-embeddings differ, and how significant can this difference be. Recall that a distance
labeling is a distributed representation of distances in a metric space (X , d), where
each point x ∈ X is assigned a succinct label, such that the distance between any
two points x, y ∈ X can be approximated given only their labels. A highly structured
special case is an embedding into �∞, where each point x ∈ X is assigned a vector
f (x) such that ‖ f (x) − f (y)‖∞ is approximately d(x, y). The performance of a
distance labeling or an �∞-embedding is measured via its distortion and its label-
size/dimension. We also study the analogous question for the prioritized versions of
these twomeasures. Here, a priority order π = (x1, . . . , xn) of the point set X is given,
and higher-priority points should have shorter labels. Formally, a distance labeling
has prioritized label-size α( · ) if every x j has label size at most α( j). Similarly, an
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embedding f : X → �∞ has prioritized dimension α( · ) if f (x j ) is non-zero only
in the first α( j) coordinates. In addition, we compare these prioritized measures to
their classical (worst-case) versions. We answer these questions in several scenarios,
uncovering a surprisingly diverse range of behaviors. First, in some cases labelings
and embeddings have very similar worst-case performance, but in other cases there is a
huge disparity. However in the prioritized setting, wemost often find a strict separation
between the performance of labelings and embeddings. And finally, when comparing
the classical and prioritized settings, we find that the worst-case bound for label size
often “translates” to a prioritized one, but also find a surprising exception to this rule.

Keywords Metric embedding · Distance labeling · �∞

Mathematics Subject Classification 30L05 · 46B85 · 05C12 · 05C78 · 68R12

1 Introduction

It is often useful to succinctly represent the pairwise distances in a metric space (X , d)

in a distributed manner. A common model, called distance labeling, assigns to each
point x ∈ X a label l(x), such that some algorithmA (oblivious to (X , d)) can compute
the distance between any two points x, y ∈ X given only their labels l(x), l(y), i.e.,
A(l(x), l(y)) = d(x, y). The goal is to construct a labeling whose label-size, defined
as maxx∈X |l(x)|, is small. For general n-point metric spaces, Gavoille et al. [14]
constructed a labeling scheme with label size of O(n) words, and also proved this
bound to be tight.1

To obtain smaller label size, one often considers algorithms that approximate the
distances. A distance labeling is said to have distortion t � 1 if

∀ x, y ∈ X , d(x, y) � A(l(x), l(y)) � t · d(x, y).

While the lower bound of [14] holds even for distortion t < 3, Thorup and Zwick
[26] constructed a labeling scheme with distortion 2t − 1 and label size O(n1/t log n)

for every integer t � 2. These bounds are almost tight (assuming the Erdős girth
conjecture), and demonstrate that for distortion O(log n), label size O(log n) is
possible.2

From an algorithmic viewpoint, there is a significant advantage to labels possessing
additional structure, for example labels that are vectors in a normed space. This struc-
ture can lead to improved algorithms, for example nearest neighbor search [5, 15].
A natural candidate for vector labels is the �∞ space, since every finite metric space
embeds into it isometrically (i.e., with no distortion). As such isometric embeddings

1 We measure size in words to avoid issues of bit representation. In the common scenario where distances
are polynomially-bounded integers, every word has O(log n) bits, where n = |X |. The bounds in [14] are
given in bits and are for unweighted graphs. Nevertheless, once we consider weighted graphs, �(n) words
are sufficient and necessary for exact distance labeling, see Theorem 2.1.
2 A much earlier technique to construct labeling scheme with distortion O(log n) is Bourgain’s [6]
embedding into O(log2 n)-dimensional �2, providing O(log2n) label size.
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require �(n) dimensions [19], one may consider instead embeddings with small
distortion. Formally, an embedding f : X → �∞ is said to have distortion t � 1
if

∀x, y ∈ X , d(x, y) � ‖ f (x) − f (y)‖∞ � t · d(x, y).

Matoušek [20] showed that for every integer t � 2, every metric space embeds with
distortion 2t − 1 into �∞ of dimension O(n1/t t log n) (which again is almost tight
assuming the Erdős girth conjecture). For distortion O(log n), Abraham et al. [1] later
improved the dimension to O(log n).

In this paper, we take the perspective that �∞-embeddings are a particular form of
distance labelings, and study the trade-offs these two models offer between distortion
and dimension/label-size.While the inherent structure of �∞-embeddingsmakes them
preferable, one may suspect that their additional structure precludes the tight trade-off
achieved using generic labelings. Yet we have seen that for general metric spaces,
the performance of �∞-embeddings is essentially equivalent to that of generic label-
ings. This observation motivates us to consider more restricted input metrics, such
as �p spaces, planar graph metrics, and trees. The central question we address is the
following.

Question 1.1 In what settings are generic distance labelings more succinct than �∞-
embeddings, and how significant is the gap between them?

Priorities. Elkin et al. [9] introduced the problems of prioritized distortion and priori-
tized dimension; they posited that some points have higher importance or priority, and
it is desirable that these points achieve improved performance. Formally, given a prior-
ity ordering π = {x1, . . . , xn} on the point set X , we say that embedding f : X → �∞
possesses prioritized contractive distortion3 α : N → N (w.r.t. π ) if

∀ j < i,
d(x j , xi )

α( j)
� ‖ f (x j ) − f (xi )‖∞ � d(x j , xi ). (1.1)

Prioritized distortion is defined similarly for distance labeling. Furthermore, we say
that a labeling scheme has prioritized label-sizeβ : N → N, if every x j has label length
|l(x j )| � β( j). We say that embedding f : X → �∞ has prioritized dimension β if
every f (x j ) is non-zero only in the first β( j) coordinates (i.e., fi (x j ) = 0 whenever
i > β( j)). Here too �∞-embeddings are a more structured case of labelings, and
we again ask what are the possible trade-offs and how these two compare. It is worth
noting that the priority functionsα, β are definedon all ofN and applywhen embedding
every finite metric space; in particular, they are not allowed to depend on n = |X |.
Analogously to Question 1.1, we may also ask here about prioritized label size and
dimension:

3 In the original definition of prioritized distortion in [9], the requirement of equation (1.1) is replaced
by the requirement d(x j , xi ) � ‖ f (x j ) − f (xi )‖∞ � α( j) · d(x j , xi ). We add the word contractive to
emphasize this difference. Prioritized contractive distortion is somewhat weaker in that it does not imply
scaling distortion (see Sect. 1.2).
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Question 1.2 In what settings are distance labelings with prioritized label size more
succinct than �∞-embeddings with prioritized dimension, and how significant is the
gap between them?

In many embedding results, the (worst-case) distortion is a function of the size of the
metric space n = |X |. Elkin et al. [9] demonstrated a general phenomenon: Often
a worst-case distortion α(n) can be replaced with a prioritized distortion ˜O(α( j))
using the same α.4 For example, every finite metric space embeds into a distribution
over trees with prioritized expected distortion O(log j), which extends the O(log n)

distortion known from [12]. Recently, Bartal et al. [4] showed that every finite metric
space embeds into �2 with prioritized distortion O(log j), which extends the O(log n)

distortion known from [6]. In fact,we are not aware of any settingwhere it is impossible
to generalize a worst-case distortion guarantee to a prioritized guarantee. The final
question we raise is the following.

Question 1.3 Does this analogy between worst-case and prioritized distortion extend
also to dimension and to label-size, or perhaps their worst-case and prioritized versions
exhibit a disparity?

1.1 Results: Old and New

Our main results and most relevant previous bounds are discussed below and
summarized in Table 1. Additional related work is described in Sect. 1.2.

General Metrics. As discussed above, embeddings and labeling schemes for general
metrics have essentially the same label size/dimension for all distortion parameters.
For prioritized labelings and embeddings, the comparison is more complex. For exact
labeling scheme, one can obtain label size O( j) by simply storing in the label of
the point x j its distances to x1, . . . , x j−1 (recall that we count words). This is essen-
tially optimal, even if we allow distortion up to 3, see Theorem 2.1. In contrast, for
embeddings into �∞, we show in Theorem 2.2 that prioritized dimension is impossi-
ble for distortion less than 3/2. Specifically, we provide an example where the images
of x1 and x2 must differ in at least �(n) coordinates for arbitrarily large n. This
proves a strong separation between embeddings and labelings, and also demonstrates
an embedding result that has no prioritized counterpart.

For prioritized distortion O(log j), Elkin et al. [9] constructed a labeling with
prioritized label size of O(log j). We construct in Theorem 2.3 �∞-embeddings with
different tradeoffs between the prioritized distortionα and dimensionβ. Two represen-
tative examples are prioritized distortion α( j) = O(log j) with prioritized dimension
β( j) = O( j), and α( j) = O(log log j) with β( j) = O( j2). This is significantly
better than for the O(1)-distortion case, yet considerably weaker than results on
labeling.

Additional interesting results in this context were given in [9], showing that every
metric space embeds into every �p , p ∈ [1,∞], with prioritized distortion O(log4+ε j)
and prioritized dimension O(log4 j) (for every constant ε > 0). Furthermore, indepen-
dently and concurrently to our work, Elkin and Neiman [11] obtained two additional

4 We use ˜O notation to suppress constants and logarithmic factors, that is ˜O(α( j)) = α( j) ·polylog(α( j)).
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Table 1 Summary of our findings

Worst-case label-size/dimension
Distortion Distance labeling Embedding into �∞

1 General metric < 3 �(n)∗ [14] �(n) [21]

2 General metric O(log n) O(log n) [26] �(log n) [1]

3 �p for p ∈ [1, 2] 1 + ε O(ε−2 log n) Theorem 3.1 �(n)∗∗ Theorem 3.2

4 Tree 1 O(log n) [25] �(log n) [19]

5 Planar 1 �(
√
n) [14] �(n) [19]

6 Treewidth k 1 O(k log n) [14] �(n)† [19]

Prioritized label-size/dimension

Distortion Distance labeling Embedding into �∞
7 General metric < 3/2 �( j)∗ Theorem 2.1 �(n)‡ Theorem 2.2

8 General metric O(log j) O(log j) [9] O( j) Corollary 2.4

9 �p for p ∈ [1, 2] 1 + ε O(ε−2 log j) Theorem 3.1 j�(1/ε) Theorem 3.3

10 Tree 1 O(log j) [9] �(log j) Theorem 4.2

11 Planar 1 �( j) Theorem 5.2 �(n)‡ Theorem 5.1

12 Treewidth k 1 O(k log j) [9] �(n)†,‡ Theorem 5.1

Question 1.1 is answered by comparing the last two columns of lines 1–6; in the very general and very
restricted families (lines 1, 2, 4), labelings and embeddings perform similarly, while other families (lines
3, 5, 6) exhibit a strict separation. Question 1.2 is answered by comparing the last two columns of lines
7–12; we see a strict separation between them in all families other than trees (line 10). Question 1.3 is
answered by comparing each line i = 1, . . . , 6 with line i +6; for distance labeling, worst-case bound β(n)

translates to prioritized O(β( j)) except for planar graphs (lines 5, 11), while for embeddings, dimension
translates to its prioritized version only for trees (lines 4, 10)
∗The upper bound is for distortion 1 (i.e., isometric embedding)
∗∗Holds for 1 + ε <

√
2 and p ∈ [1,∞]

†Holds for k � 2
‡This excludes priority dimension for any function α : N → N that is independent of n = |X |

embeddings into �∞, for any integer parameter k � 1, there are embeddings with:
(1) prioritized distortion 2

⌈

k log j/log n
⌉− 1 and dimension O(kn1/k log n) (not pri-

oritized); and (2) prioritized distortion 2k log log j + 1 and prioritized dimension
O(k j2/k log n) (note that the dimension bounds here also depend on n = |X | and
hence are not truly prioritized). See Table 2 for a comparison of these results with
ours.

�p Spaces. The seminal Johnson–Lindenstrauss Lemma [16] states that every n-point

subset of �2 embeds with distortion 1+ ε into �
O(ε−2 log n)

2 (where as usual �dp denotes
the d-dimensional �p space), and this readily implies a labeling with distortion 1 + ε

and label size O(ε−2 log n). Since every �p, p ∈ [1, 2], embeds isometrically into
squared-L2 (equivalently, its snowflake embeds into L2), this implies a labeling with
the same performance for �p as well, see Theorem 3.1. Furthermore, we show in
Theorem 3.1 (using [22]) that this labeling can be prioritized to achieve distortion
1 + ε with label size O(ε−2 log j).
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Table 2 �∞-embeddings and distance labelings of general metrics with different trade-offs between
prioritized distortion and dimension/label size

Distance labelings for general metrics
Prioritized distortion Prioritized label size Notes Refs.

1 2 ·⌈k log j/log n
⌉ − 1 O(n1/k log j) ∀ k ∈ N [9]

2 2k − 1 O( j1/k log j) ∀ k ∈ N [9]

Embeddings of general metrics

Prioritized distortion Prioritized dimension Notes Refs.

3 O(log4+ε j) O(log4 j) ∀ constant ε [9]

4 2 ·⌈k log j/log n
⌉ − 1 O(kn1/k log n) ∀ k ∈ N [11]

2 · 	log j
 − 1 O(log2n) [11]

5 2k log log j + 1 O(k( j2/k + log k) log n) ∀ k ∈ N [11]

6 2 ·⌈k log j/log n
⌉

n1/k j ∀ k ∈ N Corollary 2.4

2 · 	log j
 2 j Corollary 2.4

7 2 · 	log log j
 j2 Corollary 2.4

The labeling results are superior to their embedding counterparts. Line 6 is obtained by plugging in t =
log n/k in Corollary 2.4. Comparing the result in line 4 to ours in line 6, in the most interesting regime of
distortion 2 log j , we achieve a truly prioritized result (with dimension independent of n), while [11] avoids
linear dependencies in the dimension. Our result in line 7 is strictly superior to that of line 5, which is not
truly prioritized. However, [11] provides a much wider spectrum of possible trade-offs

For �∞-embeddings, the performance is significantly worse. We show in Theorem
3.2 that for certain n-point subsets of �p, for any p ∈ [1,∞], embedding into �∞
with distortion less than

√
2 requires �(n) coordinates (recall that O(n) coordinates

are sufficient to isometrically embed every n-point metric into �∞). For prioritized
embeddings into �∞ with distortion 1 + ε, we prove a lower bound of j�(1/ε) on the
prioritized dimension, see Theorem 3.3.

Tree Metrics. Trees are a success story, where both labelings and embeddings have
the same performance. Here we study metric spaces that induced by the shortest path
metric of weighted trees. In their seminal paper on metric embeddings, Linial et al.
[19] proved that every n-node tree embeds isometrically into �

O(log n)
∞ . In the context

of routing, Thorup and Zwick [25] constructed an exact distance labeling with label
size O(log n) (where routing decisions can be done in constant time), and Elkin et
al. [9] modified this to achieve prioritized label size O(log j). Our contribution is a
prioritized version of [19], i.e., an isometric embedding of a tree metric into �∞ with
prioritized dimension O(log j), see Theorem 4.2. We note that an equivalent result
was proved independently and concurrently by Elkin and Neiman [11].

Planar Graphs and Restricted Topologies. Here we study metric spaces that induced
by the shortest path metric of weighted graphs with restricted topologies. We first
consider exact distance labeling and isometric embeddings. Gavoille et al. [14] showed
that planar graphs admit exact labeling with label size O(

√
n), and proved a matching
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lower bound.5 They further showed that treewidth-k graphs admit exact labeling with
label size O(k log n). Linial et al. [19] proved that an isometric embedding of the
n-cycle graph into �∞, and in fact into any normed space, requires�(n) coordinates.6

Notice that the cycle graph is both planar and has treewidth 2; hence, there is a strict
separation between distance labeling and �∞-embedding.

For exact prioritized distance labeling, we prove that planar graphs require pri-
oritized label size �( j) (based on [14]), see Theorem 5.2. This bound is tight, as
prioritized label size O( j) is possible already for general graphs (Theorem 2.1). We
conclude that priorities make exact distance labelings much harder for planar graphs.7

This lower bound for exact prioritized labeling holds for unweighted graphs as well,
hence this type of labeling is now well understood. For treewidth-k graphs, Elkin et
al. [9] constructed exact labeling with prioritized label size O(k log j). For isometric
embeddings into �∞, we show in Theorem 5.1 that no prioritized dimension is possi-
ble for the cycle graph, which provides a lower bound for both planar and treewidth-2
graphs. This implies a dramatic separation for these families.

Additional results on labelings with 1+ε distortion, and embeddings with constant
distortion are described in Sect. 1.2.

1.2 RelatedWork

For distortion 1 + ε in planar graphs, Thorup [24] and Klein [17] constructed dis-
tance labels of size O(log n/ε). Abraham and Gavoille [3] generalized this result
to Kr -minor-free graphs, achieving label size O(g(r) log n/ε).8 No low-dimension
embedding into �∞ with distortion 1 + ε is known for planar graphs or even tree-
width-2 graphs. If one allows larger distortion, Krauthgamer et al. [18] proved that
planar graphs embed with distortion O(1) into �

O(log n)∞ , or more generally that Kr -

minor-free graphs embed with distortion O(r2) into �
O(3r log n)∞ . Abraham et al. [2]

showed that Kr -minor-free graphs embed with distortion O(1) into �
O(g(r) log2 n)∞ .

Turning to priorities, Elkin et al. [9] constructed prioritized versions of distance label-
ing with distortion 1 + ε. Specifically, for planar and Kr -minor-free graphs they
achieve label sizes of O(log j/ε) and O(g(r) log j/ε), respectively. No prioritized
embeddings are known, nor lower bounds thereof.

Elkin et al. [8] studied the problem of terminal distortion, where there is specified
a subset K ⊂ X of terminal points, and the goal is to embed the entire space (X , d)

while preserving pairwise distances among K × X . For additional embeddings with
terminal distortion see [4, 10]. Embeddingswith terminal distortion can be used used to
construct embeddingswith prioritized distortion.We utilize this approach in Theorems
3.1 and 4.2.

5 This lower bound, as well as all other lower bounds from [14], count bits rather than words.
6 Their proof is much more general than what is required for �∞. For a simpler proof for the special case
studied here, see Theorem 5.1.
7 Interestingly, for unweighted planar graphs, Gavoille et al. [14] prove only a lower bound of �(n1/3) on
the label size, and closing the gap to the upper bound O(

√
n) remains an important open question.

8 The function g(r) depends only on r and is taken from the structure theorem of Robertson and Seymour
[23].
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Abraham et al. [1] studied scaling distortion, which provides improved distortion
for 1− ε fractions of the pairs, simultaneously for all ε ∈ (0, 1), as a function of ε. A
stronger version called coarse scaling distortion has improved distortion guarantees
for the farthest pairs. Bartal et al. [4] showed that scaling distortion and prioritized
distortion (in the sense of [9]) are essentially equivalent, but this is not known to hold
for the prioritized contractive distortion we use in the current paper (see footnote 3).

1.3 Preliminaries

The �p-norm of a vector x = (x1, . . . , xd) ∈ R
d is ‖x‖p := (∑d

i=1 |xi |p
)1/p, where

‖x‖∞ := maxi |xi |. An embedding f between two metric spaces (X , dX ) and (Y , dY )

has distortion ct if for every x, y ∈ X ,

dX (x, y)

c
� dY ( f (x), f (y)) � t · dX (x, y).

t (resp. c) is the expansion (resp. contraction) of f . If the expansion is 1, we say that f
is Lipschitz, while if c = 1 we say that the embedding is non-contractive. Embedding
with distortion 1 (where c = t = 1) is called isometric.

Embedding f : X → �d∞ can be viewed as a collection of embeddings { fi }di=1 into
the line R. By scaling we can assume that the embedding is non-contractive. That is,
if f has distortion t then for every x, y ∈ X and i , | fi (x) − fi (y)| � t · dX (x, y) and
there is some index ix,y such that dX (x, y) � | fix,y (x) − fix,y (y)|. We say that the
pair x, y is satisfied by the coordinate ix,y .

We consider connected undirected graphsG = (V , E)with edge weightsw : E →
R>0. Let dG denote the shortest path metric inG. For a vertex x ∈ V and a set A ⊆ V ,
let dG(x, A) := mina∈A d(x, a), where dG(x,∅) := ∞. We often abuse notation and
write the graph G instead of its vertex set V .

We always measure the size of a label by the number of words needed to store it
(where each word contains O(log n) bits). For ease of presentation, we will ignore
issues of representation and bit counting. In particular, we will assume that every
pairwise distance can be represented in a single word. We note however that the lower
bounds of [14] are given in bits, and therefore our Theorem 5.2 is as well.

All logarithms are in base 2. Given a set A,
(A
2

) = {{x, y} | x, y ∈ A, x �= y}
denotes all the subsets of size 2. The notation x = (1± ε) · y means (1− ε)y � x �
(1 + ε)y.

2 General Graphs

In this section we discuss our result on succinct representations of general metric
spaces. We start with the regime of small distortion. Recall that there exist both exact
distance labelings with O(n) label size [14] as well as isometric embeddings into �n∞
[21], and both results are essentially tight (even if one allows distortion < 3). In the
following theorem we provide lower and upper bounds for exact distance labelings
with prioritized label size.
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Theorem 2.1 Given an n-point metric space (X , d) and priority ordering X =
{x1, . . . , xn}, there is an exact labeling scheme with prioritized label size j . This
is asymptotically tight, that is every exact labeling scheme must have prioritized label
size �( j). Furthermore, for t < 3, every labeling scheme with distortion t must have
prioritized label size ˜�( j).

Proof Webegin by constructing the labeling scheme. The label of x j simply consists of
the index j and d(x1, x j ), d(x2, x j ), . . . , d(x j−1, x j ). The size bound and algorithm
for answering queries are straightforward. If one allows distortion t < 3, [14] proved
that every labeling scheme with distortion t must have label size of �(n) bits, or ˜�(n)

words. As some vertex must have a label of size ˜�(n), the prioritized lower bound
˜�( j) follows.

Finally, we prove the �( j) lower bound for exact distance labeling. We begin by
arguing that some label must be of length �(n) (in words), and then the �( j) lower
bound for prioritized label size follows. The proof follows the steps of [14]. Consider a
complete graphwith

(n
2

)

edges all having integerweights in {n+1, n+2, . . . , 2n}. Note
that there aren(n2) such graphs,where each choice ofweights defines a different shortest
path metric. Given an exact labeling scheme, the labels l(x1), . . . , l(xn) precisely
encode the graph. Following arguments from [14], the sum of lengths of the labels
must be at least logarithmic in the number of different graphs. Thus

max
i

|l(xi )| � log n(n2)

n
= �(n log n).

We conclude that some label length must be of �(n log n) bits, or �(n) words. ��
While under the standard worst-case model distance labelings and embeddings into
�∞ behave identically, we show that the prioritized versions are very different. In
the following theorem we show that no prioritized dimension is possible, even if one
allows distortion < 3/2 (note that for much larger distortions, prioritized dimension
is possible. See [9] and Corollary 2.4).

Theorem 2.2 There is no function α : N → N such that every metric space can be
embedded into �∞ with prioritized dimension α and distortion t < 3/2 (for any
fixed t).

Proof Consider the family G of unweighted bipartite graphs G = (V = L ∪ R, E)

where |L| = |R| = n, for large enough n. We first argue that there is a graph G ∈ G
with the following properties:

(i) For every u, v ∈ R or u, v ∈ L , we have dG(u, v) = 2.
(ii) Every embedding f : G → �∞ with distortion 2t requires �(n) coordinates.

The existence ofG follows by a counting argument similar to [21]. Note that |G| = 2n
2
.

Denote by G′ ⊆ G the graphs in G fulfilling property (i). Our first step is to lower
bound |G′|. Sample uniformly a graph G ∈ G. For u, v ∈ R (resp. u, v ∈ L) let Iu,v

be an indicator for the event dG(u, v) �= 2. Iu,v occurs if and only if u and v do not
have a common neighbor in L (resp. R). Then Pr [Iu,v] = (3/4)n . By a union bound,
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the probability that property (i) does not hold is at most 2 ·(n2
) ·(3/4)n . We conclude

that

|G′| � 2n
2 ·

(

1 − 2

(

n

2

)(

3

4

)n)

� 2n
2

2
.

Matoušek [21, Proposition 3.3.1] implicitly proved that for any subset G′ of G, if all
of G′ embeds into �d∞ with distortion 2t < 3, then

cdn � |G′|,

where c > 1 is a constant depending on 3 − 2t . Thus d = �(n). We conclude that
there is a graph G ∈ G fulfilling both properties (i) and (ii).

Consider such a graphG = (V = L ∪ R, E).Note that property (i) implies that there
are no isolated vertices, and moreover for every u ∈ R, v ∈ L , dG(u, v) ∈ {1, 3}.
Let G ′ be the graph G along with two new vertices l, r where l (resp. r ) has edges to
all vertices in R (resp. L). Note that for every u, v ∈ V , dG(u, v) = dG ′(u, v). Set
L ′ = L ∪ {l} and R′ = R ∪ {r}.
Claim Every embedding f : G ′ → �∞ with distortion t < 3/2 has �(n) coordinates
i for which fi (l) �= fi (r).

Proof We assume that the embedding f has expansion at most t , and for every pair
of vertices there is a coordinate where the pair is satisfied (i.e., not contracted). Set
Ai = {{u, v} ∈ (L ′∪R′

2

) | dG ′(u, v) = i
}

to be all the vertex pairs at distance exactly i .

Note that
(L ′∪R′

2

) = A1∪A2∪A3. To satisfy all the pairs in
(L ′∪R′

2

)

,�(n) coordinates
are required (this is property (ii)). We will show that we can satisfy all the pairs in
A1 ∪A2 using O(log n) coordinates only. Thus satisfying all the pairs inA3 requires
�(n) coordinates.

The clique Kn can be embedded isometrically into �
	log n
∞ [19]. Such an embedding

can be constructed by simply mapping Kn to different combinations of {0, 1}	log n
.
As 1 is the minimal distance, we can just embed all the 2n + 2 vertices as a clique
using O(log n) coordinates. By doing so, all the pairs in A1 will be satisfied. A2

equals
(L ′
2

) ∪ (R′
2

)

. Note that the metric induced on
(L ′
2

)

is just a clique with edges of
length 2. Thus we can embed all of L ′ to the vectors {±1}O(log n). Additionally send
all of R′ to 0. Note that by doing so we satisfied all the pairs in

(L ′
2

)

while incurring

no expansion. Similarly we can satisfy all the pairs in
(R′
2

)

using O(log n) additional
coordinates.

Next consider an arbitrary embedding f : G ′ → �∞ with distortion t < 3/2. We
argue that in a coordinate fi : G ′ → R where fi (l) = fi (r), no pair ofA3 is satisfied.
Indeed, every vertex v ∈ L ′∪R′ is at distance 1 from either l or r . Aswe have expansion
at most t , in a coordinate i where fi (l) = fi (r) the maximal distance between a pair
of vertices v, u is 2t . In particular, for every {v, u} ∈ A3, | fi (x) − fi (y)| � 2t < 3.
Thus no pair {v, u} ∈ A3 is satisfied. As there must be �(n) coordinates where some
pair fromA3 is satisfied, necessarily there are �(n) coordinates where fi (l) �= fi (r).

��
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We conclude that there are �(n) coordinates where at least one of l, r is not mapped
to 0. Set π to be any priority ordering wherein l and r have priorities 1 and 2 respec-
tively. For every priority function α : N → N, by taking n � α(2), α(1), there is no
embedding with prioritized dimension α with respect to π . The theorem follows. ��

Considering that for distortion less than 3/2 no prioritized dimension is possible,
it is natural to ask for what distortions are prioritized embeddings possible. Some
previous results of this nature are described in the introduction [9, 11]. As exact
distance labeling is possible using O( j) labels, it is also natural to ask what distortion
can be obtained with prioritized dimension O( j). The following is a meta theorem
constructing various trade-offs.Wepresent some specific implications inCorollary 2.4.
A comparison between our results and other results appears in Table 2.

Consider a monotone function β : N → N. For j ∈ N, let χβ( j) be the minimal i
such that β(χβ( j)) � j .

Theorem 2.3 Given a metric space (X , d) with priority ordering X = {x1, . . . , xn}
and a function β : N → N, there is an embedding f : X → �∞ with prioritized
dimension β(χβ( j)) and contractive prioritized distortion 2 · χβ( j).

Before presenting the proof of Theorem 2.3, we provide some of the intuition behind
it. Recall that the Fréchet embedding [21] (also called Kuratowski embedding) is an
embedding into �n∞, where the j’th coordinate for a point x is simply x’s distance to x j .
While this is an isometric embedding, every point is non-zero in n − 1 coordinates.
In order to obtain prioritized dimension, we will set the j coordinate of a point x to
be its distance to the set that contains x j together with all points x j ′ for sufficiently
small j ′ (where the value of j ′ is determined by the function β). This “padding” will
ensure prioritized dimension, but also induce larger distortion as a function of β.

Proof of Theorem 2.3 We suggest that while inspecting the proof, it may be helpful for
the reader to focus on the setting β(i) = 2i , wherein χβ( j) = 	log j
. Set S0 = ∅
and Si = {x j | j � β(i)}. We define embedding f by setting its j’th coordinate to be

f j (x) := d
(

x, Sχβ( j)−1 ∪ {x j }
)

.

Note that for every j ′ such that χβ( j ′) > χβ( j), f j ′(x j ) = 0. Note also that there
may be many points x j ′ with j ′ < j and yet f j (x j ′) �= 0. Thus x j is non-zero only in
the first β(χβ( j)) coordinates as required.

Next we argue the prioritized distortion. It is clear that f is Lipschitz. Con-
sider a pair of vertices x j , y. Set 
 = d(x j , y), and αi = d({x j , y}, Si ). Then
∞ = α0 > α1 � α2 � . . . � αχβ( j) = 0. We argue that there must be some index i
such that αi+1 � min {αi ,
/2} − 
/(2χβ( j)). Suppose for contradiction otherwise
(i.e., no such index exist). We argue by induction on q ∈ [1, χβ( j)] that αχβ( j)−q <

q
/(2χβ( j)). For the base case note that 0 = αχβ( j) > min {αχβ( j)−1,
/2} −

/(2χβ( j)), implying αχβ( j)−1 < 
/(2χβ( j)). For general q, using the induc-
tion hypothesis q
/(2χβ( j)) > αχβ( j)−q > min {αχβ( j)−q−1,
/2} − 
/(2χβ( j)),
implying min {αχβ( j)−q−1,
/2} < (q + 1)
/(2χβ( j)) and therefore αχβ( j)−q−1
< (q + 1)
/(2χβ( j)). Overall we conclude that α0 = αχβ( j)−χβ( j) < χβ( j) ·

/(2χβ( j)) = 
/2, a contradiction as α0 = ∞.
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Choose z ∈ Si+1 such that d({x j , y}, z) = αi+1, and suppose that z = xq . Assume
without loss of generality that d(x j , z) = d({x j , y}, z) = αi+1, and so d(y, z) �
d(x j , y)− d(x j , z) � 
−
/2+
/(2χβ( j)) > 
/2. It holds that d(y, Si ∪ {z}) =
min {d(y, Si ), d(y, z)} � min {αi ,
/2}. Thus

‖ f (y) − f (x j )‖∞ � | fq(y)∞ − fq(x j )| = ∣

∣d(y, Si ∪ {z}) − d(x j , Si ∪ {z})∣∣

�
∣

∣

∣

∣

min

{

αi ,



2

}

− αi+1

∣

∣

∣

∣

� 


2χβ( j)
.

Prioritized distortion 2 ·χβ( j) follows. ��
Corollary 2.4 Given a metric space (X , d) with priority ordering X = {x1, . . . , xn},
– For every t ∈ N, there is an embedding f : X → �∞ with prioritized distortion
2 · 	log j/t
 and prioritized dimension 2t · j .

– There is an embedding f : X → �∞ with prioritized distortion 2 · 	log log j
 and
prioritized dimension j2.

Proof The first case follow by choosing the function β(i) = 2ti . Here χβ( j) =
	log2t j
 = 	log j/t
, and thus the prioritized distortion is 2 · 	log j/t
 while the
prioritized dimension is β(χβ( j)) = 2t ·	log j/t
 < 2t+log j = 2t j . For the second case

choose β(i) = 22
i
. Here χβ( j) = 	log log j
, and thus the prioritized distortion is

2 · 	log log j
 and the prioritized dimension β(χβ( j)) = 22
	log log j


< 22·2log log j = j2.
��

Note that the first case implies prioritized distortion 2 · 	log j
 and prioritized
dimension 2 j .

3 �p Spaces

In this section we consider representations of �p spaces. As these spaces are somewhat
restricted, we focus on the 1 + ε distortion regime. We begin with the upper bound
for distance labeling.

Theorem 3.1 For every ε > 0, p ∈ [1, 2], and n points in �p, there is a (1+ε)-labeling
scheme with label size O(ε−2 log n). Furthermore, given a priority ordering π , there
is a (1 + ε)-labeling scheme with prioritized label size O(ε−2 log j).

Proof We begin by constructing a labeling scheme for a set X on n points in �2. Then
we will generalize the result to �p for p ∈ [1, 2].

As a consequence of the Johnson–Lindenstrauss Lemma [16], there is an embed-

ding f : X → �
O(ε−2 log n)

2 with 1 + ε distortion. By simply storing f (x) as the
label of x ∈ X , we obtain a 1 + ε labeling scheme with O(ε−2 log n) label size.
Next, we consider a set X with priority ordering π = {x1, x2, . . . , xn}. Narayanan
and Nelson [22] constructed a terminal version of the JL transform: Specifically,
given a set K of k points in �2 there is an embedding f of the entire �2 space
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into �
O(ε−2 log k)
2 such that for every x ∈ K and y ∈ �2, ‖ f (x) − f (y)‖2 =

(1 ± ε)‖x − y‖2. For i = 0, 1, . . . , 	log log n
, set Si = {x j | j � 22
i }. Let

fi : X → �
O(log |Si |)
2 be a terminal JL transformw.r.t. Si . The label of x j will consist of

f0(x j ), f1(x j ), . . . , f	log log j
(x j ). Given a query on x j , x j ′ , where j < j ′, our answer
will be ‖ f	log log j
(x j ) − f	log log j
(x j ′)‖2. The distortion follows as x j ∈ S	log log j

(hence [22] guarantees ‖ f	log log j
(x j ) − f	log log j
(x j ′)‖2 = (1 ± ε)‖x j − x j ′ ‖2).
The length of the label of x j is bounded by

	log log j

∑

i=0

O(ε−2 log |Si |) = O(ε−2)

	log log j

∑

i=0

2i

= O(ε−2) · 2	log log j
+1 = O(ε−2 log j),

words, as required.
To generalize the labeling schemes to �p for p ∈ [1, 2], we note that every p ∈

[1, 2], �p embeds isometrically into squared-L2, or equivalently, the snowflake of
�p embeds into L2 (see e.g. [7]). Specifically, for a set X ⊆ �p, there is a function
fX : X → �2, such that for every x, y ∈ X , ‖x − y‖p = ‖ f (x) − f (y)‖22. Then a
labeling scheme for �2 implies the same performance for �p as well, the only change
being that the computed distances must be squared. ��
Next we turn our attention to lower bounds. Every n-point set in �2 embeds isomet-
rically into any other �p space, for p ∈ [1,∞] (see e.g. [21]). This implies that any
lower bound that we prove for �2 will holds as well for any other �p space (as the hard
example will reside in �p as well).

Theorem 3.2 For every p ∈ [1,∞] and n ∈ N, there is a set A of 2n points in �p,
such that every embedding of A into �∞ with distortion smaller than 2max {1/2,1−1/p}
has dimension at least n.

Proof Set A = {e1,−e1, e2,−e2, . . . , en,−en}, the standard basis and its antipodal
points (here {ei ,−ei } is an antipodal pair). Fix p, and we will prove that every
embedding of A ⊆ �p with distortion smaller than 21−1/p into �∞ requires at least n
coordinates. As mentioned above, the lower bound for p = 2 holds for all �p as well;
thus the theorem will follow.

We argue that each coordinate can satisfy at most a single antipodal pair. As there
are n such pairs, the lower bound follows. Consider a single coordinate f : A → R.
Assume by way of contradiction that there are ei ,−ei , e j ,−e j ∈ A, i �= j , such that
2 � | f (ei ) − f (−ei )|, | f (e j ) − f (−e j )|. As f (ei ), f (−ei ), f (e j ), f (−e j ) ∈ R, by
case analysis there must be a pair consisting of one point from { f (ei ), f (−ei )}, and
one point from { f (e j ), f (−e j )} at distance at least min {| f (ei ) − f (−ei )|, | f (e j ) −
f (−e j )|} � 2. But the actual distance between this pair is only 21/p. Thus f has
distortion 2/21/p = 21−1/p, a contradiction. ��
Note that Theorem 3.2 implies a lower bound of �( j) on the prioritized dimension of
an embedding from �p into �∞, with distortion smaller than

√
2. Next, for distortion

1 + ε we prove a stronger lower bound with exponential dependency on ε.
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Theorem 3.3 For every ε ∈ (0, 1) and p ∈ [1,∞] there is a set of points in �p and
a priority ordering, such that every embedding of them into �∞ with distortion 1 + ε

has prioritized dimension at least j1/6ε .

Proof As above, we may assume that p = 2. Furthermore, we will assume that
ε < 1/6, as otherwise a better lower bound follows from Theorem 3.2. Let n be
large enough, and Hn = {±1}n ⊆ �n2 be the Hamming cube. We start by creating a
symmetric subset A ⊂ Hn (i.e., A = −A), such that all the points in A differ in more
than ε′n coordinates, for ε′ = 3ε. The set A is created in a greedy manner. Initially
set S = Hn and A = ∅. First pick an arbitrary pair x,−x ∈ S from S and add them
to A. Delete from S all the points that differ in fewer than ε′n coordinates from either
x or −x . Note that when y ∈ S is deleted, so is its antipodal point −y. Thus, both
S, A are maintained to be symmetric. We continue with this process until S is empty.
The number of points that differ by at most ε′n coordinates from any point v ∈ H is

ε′n
∑

i=0

(

n

i

)

�
(

n

ε′n

)(

1 + ε′n
n − 2ε′n + 1

)

< 2

(

n

ε′n

)

.

Therefore for each added vertex we deleted fewer than 2
( n
ε′n

)

points. We conclude that
the size of A is at least

|A| � 2n

2

(

n

ε′n

) � 1

2
· 2n
(

en

ε′n

)ε′n = 2(1−ε′ log(e/ε′))n

2
> 2 · 2n/2. (3.1)

We argue that an embedding f of A into R can satisfy at most a single antipodal pair
x,−x . Indeed, assume by way of contradiction that there is f : A → R and x, y ∈ A
such that

√
4n � | f (x) − f (−x)|, | f (y) − f (−y)| � (1 + ε)

√
4n. Similarly to the

proof of Theorem 3.2, by case analysis, there must be a pair z ∈ {x,−x} and w ∈
{y,−y} such that | f (z) − f (w)| � min {| f (x) − f (−x)|, | f (y) − f (−y)|} �

√
4n.

As both x,−x differ from both y,−y in more than ε′n coordinates, z coincides with
w in at least ε′n coordinates. In particular ‖z − w‖2 �

√
4n(1 − ε′). Thus f has

distortion at least

| f (z) − f (w)|
‖z − w‖2 �

√
4n√

4n(1 − ε′)
> 1 + ε,

a contradiction.
Next, let Y = {±1}ε′n{0}(1−ε′)n be the set of all points that attain values {±1} in the

first ε′n coordinates, with all other coordinates 0. Consider a coordinate f : X → R

that sends all of Y to 0. We argue that f will not satisfy any antipodal pair in A. Indeed,
consider an antipodal pair x,−x . Let y ∈ Y be the point agreeing with x on the first
ε′n coordinates and 0 everywhere else. It holds that
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| f (x) − f (−x)| � | f (x) − f (y)| + | f (y) − f (−y)| + | f (−y) − f (−x)|
� (1 + ε)(‖x − y‖2 + 0 + ‖(−x) − (−y)‖2)
= (1 + ε) · 2 · √(1 − ε′)n <

√
4n.

As each coordinate can satisfy at most a single antipodal pair from A, we conclude
that every 1 + ε embedding of X into �∞ must be non-zero on Y in at least |A|/2
coordinates.

We can now conclude the proof: Assume by way of contradiction that for any set in
�2 there is a 1+ ε embedding into �∞ with prioritized dimension j1/6ε . Set priority π

for X = A∪Y with the points in Y occupying the first |Y | places. By our assumption,
there is a 1 + ε embedding where the points of Y are non-zero only in the first

|Y |1/6ε = (2ε′n)1/2ε
′ = 2n/2 (3.1)

<
|A|
2

coordinates. Thus the embedding cannot satisfy all the pairs in A, a contradiction. ��

4 Trees

In this section, we present an embedding of trees into �∞ with prioritized dimension
O(log j).We begin by sketching the classic isometric embedding of trees into �

O(log n)∞
due to [19]. This embedding utilizes a balanced decomposition (a technique also used
in distance labelings for trees): First, identify a separator vertex s among the vertex
set V , such that we can decompose T into two trees T1, T2, each containing at most
2n/3 + 1 vertices, where T1 ∩ T2 = {s}. Now create a new coordinate wherein
each vertex v ∈ T1 assumes value d(v, s), while each vertex x ∈ T2 assumes value
−d(x, s). This coordinate satisfies all pairwise distances T1 × T2. Recursively (and
separately) embed T1 and T2 into �∞, recalling that each has its own copy of s. The
two embeddings are then merged by translating T2 so that its copy of s is mapped to
the same vector assumed by the copy of s in T1.

Given a priority ordering on the vertices v1, v2, . . . , vn , our goal is to create an
isometric embedding into �∞ with prioritized dimension O(log j). A natural first
step would be to devise a terminal embedding: Given terminal set K , embed T into
�
O(log |K |)∞ while preserving all pairwise distances K × V . A terminal embedding can

be constructed following the lines of the classic embedding bymodifying the separator
decision rule, and ensuring that after O(log |K |) recursive steps each terminal is found
in a different subtree. However, a terminal embedding of this type is too weak to yield
a prioritized embedding, since the mapping of all terminals into 0 (subsequent to their
firstO(log k)non-zero coordinates) interfereswith the distances betweennon-terminal
pairs.

To circumvent this problem, we shall “fold” the terminals one above the other, until
ultimately all terminals will fall on a single representative vertex (see Lemma 4.1).
During such a folding, some of the non-terminal vertices will fold upon each other
as well, but our terminal embedding will be sufficiently robust to ensure that their
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distances are retained. We will then use this result on terminal embeddings of trees
into �∞ (Lemma 4.1) to derive the stronger result, priority embeddings of trees into �∞
(Theorem 4.2).

4.1 Terminal Lemma

Lemma 4.1 Given a weighted tree T = (V , E, w) and a set K of k terminals, there
exist a pair of embeddings f : T → �

O(log k)∞ and g : T → T (into another weighted
tree T ) such that the following properties hold:

(i) Lipschitz: For every x, y ∈ V , ‖ f (x) − f (y)‖∞ � dT (x, y) and
dT (g(x), g(y)) � dT (x, y).

(ii) Preservation: For every x, y ∈ V , either ‖ f (x) − f (y)‖∞ = dT (x, y) or
dT (g(x), g(y)) = dT (x, y), or both.

(iii) Terminal Collapse: g maps all of K into a single vertex, i.e., |g(K )| = 1.

Proof We may assume that all terminals of K are leafs, as otherwise we can simply
add a dummy vertex in place of each terminal, and connect the terminal to the dummy
vertex with an edge of weight 0. The proof is by induction on k.

Base cases. For the case k = 1 we can just return the tree as is, along with the null
embedding into �∞. Next we prove the case of k = 2. Denote the two terminals by
t1, t2, and let P be the unique path in T connecting t1, t2. Let c ∈ V be the midpoint of
t1 and t2, such that dT (t1, c) = dT (t2, c). (If c does not exist in V , then add c to V , and
split the corresponding middle edge into two new edges joined at c.) Now “fold” P
around c. That is, create a new tree T , where path P is replaced by a new path that ends
at c, and every x ∈ P is found on the new path at distance exactly dT (x, c) from c.
Any pair of points in P equidistant from c are merged—and in particular t1 and t2 are
now the same point, which is the other endpoint of the new path. All the other edges
and vertices remain the same. As a result, we obtain an embedding g : dT → T (see
Fig. 1 for an illustration). It is clear that g is Lipschitz, and moreover |g({t1, t2})| = 1.

Having specified the function g, we now describe the function f : separate T into
two trees T1, T2 where T1 ∩ T2 = {c}. Set the function f : V → R as follows:

f (v) =
{

dT (v, c) v ∈ T1,

−dT (v, c) v ∈ T2 \ {c}. (4.1)

See Fig. 1 for an illustration of function f . We argue that f is Lipschitz: Consider
a pair of vertices u, v. If u, v ∈ Ti (for some i), then by the triangle inequality
| f (u) − f (v)| = |dT (u, c) − dT (v, c)| � dT (u, v). Otherwise, assume without loss
of generality that u ∈ T1 while v ∈ T2. The shortest path from u to v must pass
through c, thus

| f (u) − f (v)| = |dT (u, c) + dT (v, c)| = dT (u, v). (4.2)
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Fig. 1 On the left is illustrated the tree T with two terminals t1, t2. The path P between the terminals
is colored in purple. The (possibly imaginary) vertex c lies at the midpoint of t1 and t2. On the right is
illustrated the tree T which is obtained by “folding” the path P around c. In this example, all the edges in
T are of unit weight, except for the edge {y1, y2} that has weight 2. The values of the function f : T → R

(see (4.1)) are: f (t1) = 4, f (t2) = −4, f (a) = 7, f (b) = −3, f (x1) = 2, f (x2) = −2, f (z) = 4

It remains only to prove the second property (preservation). Consider a pair of vertices
u, v. If u ∈ T1 and v ∈ T2, then by (4.2), | f (u) − f (v)| = dT (u, v). Otherwise, if
u, v ∈ Ti , the shortest path between u and v in T is isomorphic to the shortest path
in T , and so dT (u, v) = dT (u, v) as required.

Induction step. For k > 2 terminals, we will assume by induction that for every tree
with k′ < k terminals there are embeddings f , g as required above, such that f uses
at most a log k′ coordinates, for a = 2/log(3/2). Consider a tree T , and a terminal
set K of size k. Let s ∈ V be a separator vertex, such that T can be separated into two
trees T1, T2 where T1 ∩ T2 = {s}, and each Ti contains at most 2k/3 terminals. As all
the terminals are leafs, s /∈ K . Create a single new coordinate hs : V → R defined as
follows:

hs(x) =
{

dT (x, s) x ∈ T1,

−dT (x, s) x ∈ T2.

It is clear that hs is Lipschitz, and that for every x ∈ T1, y ∈ T2, |hs(x) − hs(y)| =
dT (x, y). For i ∈ {1, 2}, invoke the induction hypothesis on Ti with terminal set Ki =
Ti ∩ K , creating embedding pair fi : T → �

a log |Ki |∞ and gi : T → Ti which together
satisfy requirements (i)–(iii). By padding with 0-valued coordinates, we can assume
that both f1 and f2 use exactly a · log(2k/3) coordinates. Moreover, by translation
we can assume that f1(s) = f2(s) = 0 (note that there are no prioritized/terminal
dimension guarantees here). Set f12 to be the combined function of f1, f2:

f12(x) =
{

f1(x) x ∈ T1,

f2(x) x ∈ T2.

We argue that the function f12 is Lipschitz: For x, y ∈ Ti , ‖ f12(x) − f12(y)‖∞ =
‖ fi (x) − fi (y)‖∞ � dTi (x, y) = dT (x, y). On the other hand for x ∈ T1 any y ∈ T2,
using the triangle inequality
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‖ f12(x) − f12(y)‖∞ � ‖ f12(x) − f12(s)‖∞ + ‖ f12(s) − f12(y)‖∞
� dT1(x, s) + dT2(s, y) = dT (x, s) + dT (s, y) = dT (x, y).

Set f12s to be the concatenation of f12 with hs , and it is clear that f12s is Lipschitz as
well. This completes the description of the embedding into �∞.

For the embedding into the tree, let T12 be composed of the trees T1 and T2 glued
together in g1(s), g2(s). Similarly define g12 : T → T12 as follows:

g12(x) =
{

g1(x) x ∈ T1,

g2(x) x ∈ T2.

Using the triangle inequality in the same manner as for f12, it is clear that g12 is
Lipschitz. We argue that requirement (ii) holds w.r.t. f12s, g12. Indeed, for u, v in Ti ,

max
{‖ f12s(x) − f12s(y)‖∞, dT12(g12(x), g12(y))

}

� max
{‖ fi (x) − fi (y)‖∞, dTi (gi (x), gi (y))

} = dTi (x, y) = dT (x, y).

On the other hand, for v ∈ T1, u ∈ T2,

max
{‖ f12s(v) − f12s(u)‖∞, dT12(g12(v), g12(u))

}

� |hs(v) − hs(u)| = dT (v, u).

However, requirement (iii) does not immediately hold, as T12 contains two terminals
g1(K1), g2(K2). Invoke the lemma for the case of k = 2 to create two embeddings
f̂ : T12 → R, ĝ : T12 → T that fulfill requirements (i)–(iii). Set f = f12s ⊕ f̂ (g12)
to be the concatenation of f12 s with f̂ (g12) and g = ĝ(g12) to be the composition of
ĝ with g12 ending in the tree T . It is clear that both f , g are Lipschitz, as the Lips-
chitz property is preserved under concatenation and composition, thus establishing (i).
Moreover, g maps all terminals to a single vertex. Requirement (ii) also holds:

dT (u, v) = max
{‖ f12s(v) − f12s(u)‖∞, dT12(g12(v), g12(u))

}

= max
{‖ f12s(v) − f12s(u)‖∞,

| f̂ (g12(v)) − f̂ (g12(u))|, dT (ĝ(g12(v)), ĝ(g12(v)))
}

= max
{‖ f (v) − f (u)‖∞, dT (g(v), g(v))

}

.

Finally, and recalling that a = 2/log(3/2), the number of coordinates is bounded by

a log
2k

3
+ 1 + 1 = a log k + a log

2

3
+ 2 = a log k.

The lemma now follows. ��
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4.2 Prioritized Embedding of Trees into �∞

Theorem 4.2 Given a weighted tree T = (V , K , w) and a priority ordering π over V ,
there is an isometric embedding f into �∞ with prioritized dimension O(log j).

Proof Let π = {x1, x2, . . . , xn} be a priority order. Set Si = {xi : i � 22
i } for

1 � i � 	log log n
. Using Lemma 4.1, w.r.t. terminal set S1 construct embeddings
f1 : T → �

O(log |S1|)∞ and g1 : T → T1. It holds that g1(S1) is a single vertex in T1, and
for every u, v ∈ V , dT (u, v) = max {‖ f1(u) − f1(v)‖∞, dT1(g1(u), g1(v))}. Next,
using Lemma 4.1 again, w.r.t. terminal set g1(S2), construct embeddings f2 : g1(T ) →
�
O(log |S2|)∞ and g2 : g1(T ) → T2. By translation, we can assume that f2(g1(S1)) = 0.

Furthermore, g2(g1(S2)) is a single vertex in T2. It also holds that

dT (u, v) = max
{‖ f1(u) − f1(v)‖∞, ‖ f2(g1(u)) − f2(g1(v))‖∞,

dT2(g2(g1(u)), g2(g1(v)))
}

.

More generally, in the i-th step, we invoke Lemma 4.1 on Ti−1 (w.r.t. terminal
set gi−1(gi−2(· · · (g1(Si ))))) to construct tree Ti and embeddings fi , gi . By induc-
tion, we constructed trees T1, . . . , Ti and embeddings f1 : T → �

O(log |S1|)∞ , . . . ,
fi : Ti−1 → �

O(log |Si |)∞ , g1 : T → T1, . . . , gi : Ti−1 → Ti such that for all q ∈ [1, i],
gq(gq−1(. . . (g1(Sq)))) is a single vertex in Tq and fq(gq−1(· · · (g1(Sq−1)))) = {0}.
Furthermore,

dT (u, v) = max
{‖ f1(u) − f1(v)‖∞, . . . ,

‖ fi (gi−1(· · · (g1(u)))) − fi (gi−1(· · · (g1(u))))‖∞,

dTi
(

gi (gi−1(· · · (g1(u)))), gi (gi−1(· · · (g1(u))))
)}

.

(4.3)

Denote α = 	log log n
. After α steps we get functions and trees as above. Set

f = f1 ⊕ ( f2 ◦ g1) ⊕ ( f3 ◦ g2 ◦ g1) ⊕ . . . ⊕ ( fα ◦ gα−1 ◦ . . . ◦ g1) : T → �∞.

We argue that f is an isomorphic embedding with prioritized dimension O(log j)
as promised. Note that all vertices of V belong to Sα and hence mapped by
gα(gα−1(· · · (g1))) to the same vertex. Thus for every u, v ∈ V ,

dTα

(

gα(gα−1(· · · (g1(u)))), gα(gα−1(· · · (g1(v))))
) = 0.

By (4.3) we get

dT (u, v) = max
{‖ f1(u) − f1(v)‖∞, . . . ,

‖ fα(gα−1(· · · (g1(u)))) − fα(gα−1(· · · (g1(u))))‖∞
}

= ‖ f (u) − f (v)‖∞.

Finally we argue that f has prioritized dimension O(log j). Consider x j ∈ S	log log j
.
For every i > 	log log j
 it holds that fi (gi−1(gi−2(· · · (g1(x j ))))) = 0 (as x j ∈
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Si−1). Therefore x j might be non-zero only in the first

	log log j

∑

i=1

O(log |Si |) = O

⎛

⎝

	log log j

∑

i=1

2i

⎞

⎠ = O
(

2	log log j
+1) = O(log j)

coordinates. ��

5 Planar Graphs

The theorem below demonstrates that any isometric embedding of the cycle graphC2n
into �∞ requires dimension n. Furthermore, no prioritized dimension is possible for
isometric embeddings of the cycle graph. The cycle graph is an interesting example
as it is both planar and has treewidth 2. The non-prioritized lower bound is a special
case of a theorem proved in [19], which applies to general norms. Nonetheless, the
proof provided here is much simpler.

Theorem 5.1 For every n ∈ N, every isometric embedding of C2n (the unweighted
cycle graph) into �∞ requires at least n coordinates. Furthermore, there is no function
α : N → N for which the family of cycle graphs {Cn}n∈N can be embedded into �∞
with prioritized dimension α.

Proof Denote the vertices ofC2n by V = {v0, v1, . . . , v2n−1}. The maximum distance
is n, and it is realized on all the antipodal pairs {v0, vn}, {v1, vn+1}, . . . , {vn−1, v2n−1}.
We argue that in a single embedding into the line R, at most one antipodal
pair can be satisfied, that is realize distance n. Indeed, suppose by way of
contradiction that there is a non-expansive function f : C2n → R such that
| f (v j ) − f (vn+ j )| = | f (vi ) − f (vn+i )| = n for i �= j , then necessarily
max {| f (vi ) − f (v j )|, | f (vi ) − f (vn+ j )|, | f (vn+i ) − f (v j )|, | f (vn+i ) − f (vn+ j )|}
� n, a contradiction. As there are n antipodal pairs, every isometric embedding
requires at least n coordinates.

For the second part, for sufficiently large n set a priority ordering π of C2n where
vn, vn+1 have priorities 1 and 2 respectively. Consider a single Lipschitz coordinate
f : C2n → R sending both vn, vn+1 to 0. By the triangle inequality, for every antipodal
pair {vi , vn+i }, it holds that

| f (vi ) − f (vn+i )| � | f (vi ) − f (vn)| + | f (vn) − f (vn+1)| + | f (vn+1) − f (vn+i )|
� (n − i) + 0 + (i − 1) = n − 1 < n.

Thus no antipodal pair could be satisfied. We conclude that f (vi ) �= f (vn+i ) in at
least n coordinates. In particular for α(2) < n, priority distortion α is impossible. ��
Theorem 5.2 Every isometric prioritized labeling scheme for planar graphs must
have prioritized label size of at least �( j) (in bits). This lower bound holds even
for unweighted planar graphs.
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Proof Recall that [14] proved an �(n1/3) lower bound on the label size for exact
distance labeling for unweighted planar graphs. We will use the same example graph
G from [14]. We refer to [14] for the description of G; here it suffices to describe
its relevant properties. Given a parameter n, G = (V , E) is an unweighted planar
graph with O(n3) vertices, among which O(n) lie on the outer face, denoted ˜V ⊂ V .
Set E = E1 ∪ E2, where |E2| = �(n2). For every subset A ⊂ E2, denote by
GA = (V , E1 ∪ A) the graph G wherein the edge-set E2 \ A has been removed
(equivalently, where only the edge-set E1 ∪ A is retained). [14] showed that given all
pairwise distances between the outerface vertices {dGA (v, u) | v, u ∈ ˜V }, one can
recover the set A. Note that log 2|E2| = �(n2) bits are required to encode the set A.

Suppose by way of contradiction that there is an exact prioritized labeling scheme
with o( j) labels size (in bits). Given a graph GA, we define a priority ordering where
the vertices of ˜V occupy the first |˜V | places. Given all the labels of ˜V , we can encode
the set A by simply concatenating all the labels. Therefore the sum of the lengths of
the labels of ˜V must be �(n2). However, by our assumption, the sum of their lengths

is only
∑|˜V |

j=1 o( j) = o(n2), a contradiction (for sufficiently large n). ��

6 Conclusions and Open Questions

We uncover a wide spectrum of settings and bounds that answer our questions. For
Question 1.1, in the simplest case of trees, labeling and embeddings have similar
behavior, and both admit prioritization with similar bounds. For the least restricted
case of general graphs/metrics, we find similarly that labelings and embeddings exhibit
similar behavior across various distortion parameters. However between these two
extremes, for �p spaces, planar graphs and treewidth-k graphs, we see significant
separations between labelings and embeddings.

ForQuestion 1.2, we show that labelings admit far superior prioritized versions than
their embedding counterparts in all settings other than trees, and most notably for gen-
eral graphs and for planar/bounded-treewidth graphs, where no prioritized dimension
is possible. In �p spaces, while we did not rule out the possibility of prioritized dimen-
sion, we demonstrate a surprising exponential gap between labelings and embeddings
(also in the dependence on ε).

For Question 1.3 we saw that labeling schemes have prioritized versions, in all
cases other than planar graphs where instead of the desired O(

√
j) label size we show

that�( j) is surprisingly necessary. For embeddings into �∞ we showed that for larger
distortion some prioritized dimension is possible, even though it is much worse than
its labeling counterpart.

Our results leave a few open questions that may be of independent interest:
– How many coordinates are required in order to embed planar graphs – or even
treewidth-2 graphs – into �∞ with distortion 1 + ε?

– What is the required label size for 1+ε distance labeling for �p spaces, for p > 2?
– Is it possible to embed �p spaces, p ∈ [1,∞], into �∞ with distortion 1 + ε and
some prioritized dimension? Theorem 3.3 provided a j�(1/ε) lower bound, but did
not rule out this possibility. The same question applies when considering constant
distortion.
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– All results on embedding of general graphs into �∞ with both prioritized distortion
and dimension (our Theorem 2.2, [9, Theorem 15], and [11, Theorems 2 and 3])
feature prioritized contractive distortion. What is possible w.r.t. classic prioritzed
distortion (see footnote 3)?
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