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ABSTRACT
Chan, Har-Peled, and Jones [2020] recently developed locality-

sensitive ordering (LSO), a new tool that allows one to reduce

problems in the Euclidean space R𝑑 to the 1-dimensional line. They

used LSO’s to solve a host of problems. Later, Buchin, Har-Peled,

and Oláh [2019,2020] used the LSO of Chan et al. to construct very
sparse reliable spanners for the Euclidean space. A highly desirable

feature of a reliable spanner is its ability to withstand a massive

failure: the network remains functioning even if 90% of the nodes

fail. In a follow-up work, Har-Peled, Mendel, and Oláh [2021] con-

structed reliable spanners for general and topologically structured

metrics. Their construction used a different approach, and is based

on sparse covers.

In this paper, we develop the theory of LSO’s in non-Euclidean

metrics by introducing new types of LSO’s suitable for general and

topologically structured metrics. We then construct such LSO’s,

as well as constructing considerably improved LSO’s for doubling

metrics. Afterwards, we use our new LSO’s to construct reliable

spanners with improved stretch and sparsity parameters. Most

prominently, we construct �̃� (𝑛)-size reliable spanners for trees

and planar graphs with the optimal stretch of 2. Along the way to

the construction of LSO’s and reliable spanners, we introduce and

construct ultrametric covers, and construct 2-hop reliable spanners

for the line.
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1 INTRODUCTION
The Algorithmist’s toolkit consists of diverse “tools” frequently

utilized for many different problems. In the geometric context, some

tools apply to general metric spaces such as metric embeddings

[33, 55] and padded decompositions [12, 56, 74], while many tools

apply mainly to Euclidean spaces, such as dimension reduction [71],

locality-sensitive hashing [70], well-separated pair decomposition

(WSPD) [40], and many others. Recently, Chan, Har-Peled, and

Jones [42] developed a new and exciting tool for Euclidean spaces

called Locality-Sensitive Ordering (LSO).

Definition 1.1 ((𝜏, 𝜌)-LSO). Given a metric space (𝑋,𝑑𝑋 ), we say
that a collection Σ of orderings is a (𝜏, 𝜌)-LSO (locality-sensitive

ordering) if |Σ| ≤ 𝜏 , and for every 𝑥,𝑦 ∈ 𝑋 , there is a linear or-

dering 𝜎 ∈ Σ such that (w.l.o.g.) 𝑥 ≺𝜎 𝑦 and the points between 𝑥

and 𝑦 w.r.t. 𝜎 could be partitioned into two consecutive intervals

𝐼𝑥 , 𝐼𝑦 where 𝐼𝑥 ⊆ 𝐵𝑋 (𝑥, 𝜌 · 𝑑𝑋 (𝑥,𝑦)) and 𝐼𝑦 ⊆ 𝐵𝑋 (𝑦, 𝜌 · 𝑑𝑋 (𝑥,𝑦)).
Parameter 𝜌 is called the stretch parameter.

The main reason that LSO has become an extremely useful tool

is that it reduces the problem at hand in the 𝑑-dimensional Eu-

clidean space to the same problem in a much simpler space: the 1-

dimensional line. [42] constructed an (𝑂 (𝜖)−𝑑 log 1

𝜖 , 𝜖)-LSO for any

given set of points in the 𝑑-dimensional Euclidean space R𝑑 (more

generally, Chan et al. [42] constructed
(
𝑂 (𝜖−1 · log𝑛)𝑂 (𝑑 ) , 𝜖

)
-LSO

for metric spaces with doubling dimension
1 𝑑). They used their

LSO to design simple dynamic algorithms for approximate nearest

neighbor search, approximate bichromatic closest pair, approximate

MST, spanners, and fault-tolerant spanners. Afterwards, Buchin,

Har-Peled, and Oláh [36, 37] used the LSO of Chan et al. [42] to
construct reliable spanners (see Definition 1.2) for Euclidean spaces

following the same methodology: reducing the problem to the con-

struction on the line. In this work, we introduce new notions of LSO

and apply them to construct reliable spanners for non-Euclidean

metrics.

Given a metric space (𝑋,𝑑𝑋 ), a 𝑡-spanner is a weighted graph

𝐻 = (𝑋, 𝐸,𝑤) over2 𝑋 where for every pair of points 𝑥,𝑦 ∈ 𝑋 ,

𝑑𝑋 (𝑥,𝑦) ≤ 𝑑𝐻 (𝑥,𝑦) ≤ 𝑡 ·𝑑𝑋 (𝑥,𝑦), with 𝑑𝐻 being the shortest path

metric of 𝐻 . The parameter 𝑡 is called the stretch of the spanner.

1
A metric space (𝑋,𝑑 ) has doubling dimension 𝑑 if every ball of radius 2𝑟 can be

covered by 2
𝑑
balls of radius 𝑟 .

2
Often in the literature, the metric space (𝑋,𝑑𝑋 ) is the shortest path metric of a graph

𝐺 , and there is a requirement that 𝐻 will be a subgraph of𝐺 . We will not have such a

requirement in this paper.
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A highly desirable property of a 𝑡-spanner is the ability to with-

stand extensive vertex failures. Levcopoulos, Narasimhan, and Smid

[76] introduced the notion of a fault-tolerant spanner. A subgraph

𝐻 = (𝑉 , 𝐸𝐻 ,𝑤) is an 𝑓 -vertex-fault-tolerant 𝑡-spanner of a weighted
graph 𝐺 = (𝑉 , 𝐸,𝑤), if for every set 𝐹 ⊂ 𝑉 of at most 𝑓 vertices, it

holds that ∀𝑢, 𝑣 ∉ 𝐹 , 𝑑𝐻\𝐹 (𝑢, 𝑣) ≤ 𝑡 · 𝑑𝐺\𝐹 (𝑢, 𝑣). A major limitation

of fault-tolerant spanners is that the number of failures must be de-

termined in advance; in particular, such spanners cannot withstand

a massive failure. One can imagine a scenario where a significant

portion (even 90%) of a network fails and ceases to function (due to,

e.g., close-down during a pandemic), it is important that the remain-

ing parts of the network (or at least most of it) will remain highly

connected and functioning. To this end, Bose et al. [32] introduced
the notion of a reliable spanner. Here, given a failure set 𝐵 ⊆ 𝑋 , the

residual spanner 𝐻 \ 𝐵 is a 𝑡-spanner for 𝑋 \ 𝐵+, where 𝐵+ ⊇ 𝐵 is a

set slightly larger than 𝐵. Buchin et al. [37] relaxed the notion of

reliable spanners by allowing the size of 𝐵+ to be bounded only in

expectation.

Definition 1.2 (Reliable spanner). A weighted graph 𝐻 over point

set𝑋 is a deterministic𝜈-reliable 𝑡-spanner of ametric space (𝑋,𝑑𝑋 )
if 𝑑𝐻 dominates

3 𝑑𝑋 , and for every set 𝐵 ⊆ 𝑋 of points, called an

attack set, there is a set 𝐵+ ⊇ 𝐵, called a faulty extension of 𝐵, s.t.:

(1) |𝐵+ | ≤ (1 + 𝜈) |𝐵 |.
(2) For every 𝑥,𝑦 ∉ 𝐵+, 𝑑𝐻 [𝑋\𝐵 ] (𝑥,𝑦) ≤ 𝑡 · 𝑑𝑋 (𝑥,𝑦).

An oblivious 𝜈-reliable 𝑡-spanner is a distribution D over dom-

inating graphs 𝐻 , such that for every attack set 𝐵 ⊆ 𝑋 and

𝐻 ∈ supp(D), there exist a superset 𝐵+ of 𝐵 such that, for ev-

ery 𝑥,𝑦 ∉ 𝐵+, 𝑑𝐻 [𝑋\𝐵 ] (𝑥,𝑦) ≤ 𝑡 · 𝑑𝑋 (𝑥,𝑦), and E𝐻∼D
[
|𝐵+ |

]
≤

(1 + 𝜈) |𝐵 |. We say that the oblivious spanner D has 𝑚 edges if

every graph 𝐻 ∈ supp(D) has at most𝑚 edges.

We call the distributionD in Definition 1.2 an oblivious𝜈-reliable

𝑡-spanner because the adversary is oblivious to the specific spanner

produced by the distribution (it may be aware to the distribution

itself).

For constant dimensional Euclidean spaces, Bose et al. [32] con-
structed a deterministic reliable 𝑂 (1)-spanner, such that for every

attack 𝐵, the faulty extension 𝐵+ contains at most 𝑂 ( |𝐵 |2) vertices.
The construction of reliable spanners where the size of 𝐵+ is a linear
function of 𝐵 was left as an open question. For every 𝜈, 𝜖 ∈ (0, 1),
and𝑛 points in𝑑-dimensional Euclidean space (R𝑑 , ∥ · ∥2), Buchin et
al. [36] used the LSO of Chan et al. [42] to construct a deterministic
𝜈-reliable (1+𝜖)-spanner with 𝑛 ·𝜈−6 ·�̃� (𝜖)−7𝑑 ·�̃� (log𝑛) edges (see
also [31]). Later, for the oblivious case, Buchin et al. [37] applied
the same LSO to construct an oblivious 𝜈-reliable (1 + 𝜖)-spanner
with 𝑛 · �̃� (𝜖)−2𝑑 · �̃� (𝜈−1 (log log𝑛)2) edges.

Very recently, Har-Peled, Mendel, and Oláh [69] constructed

reliable spanners for general metric spaces, as well as for topo-

logically structured spaces (e.g. trees and planar graphs). They

showed that for every integer 𝑘 , every general 𝑛-point metric

space admits an oblivious 𝜈-reliable (512 · 𝑘)-spanner 4
with

3
Metric space (𝑋,𝑑𝐻 ) dominates metric space (𝑋,𝑑𝑋 ) if ∀𝑢, 𝑣 ∈ 𝑋 , 𝑑𝑋 (𝑢, 𝑣) ≤
𝑑𝐻 (𝑢, 𝑣) .
4
[69] did not compute the constant explicitly. Their construction is based on the

Ramsey-trees of Mendel-Naor [79], which have stretch 128𝑘 . Using state of the art

Ramsey trees [80] of stretch 2𝑒𝑘 instead (see also [2]), the approach of [69] provides

stretch 8𝑒𝑘 .

𝑛1+1/𝑘 · 𝑂 (𝜈−1𝑘 log2 Φ log
𝑛
𝜈 ) edges, where Φ =

max𝑥,𝑦 𝑑𝑋 (𝑥,𝑦)
min𝑥,𝑦 𝑑𝑋 (𝑥,𝑦) is

the aspect ratio of the metric space (also known as the spread, which
a priori is unbounded). Additionally, they showed that ultramet-

rics (see Definition 3.1) admit oblivious 𝜈-reliable (2 + 𝜖)-spanners
with 𝑛 · �̃� (𝜈−1𝜖−2 log2 Φ) edges, tree metrics admit oblivious 𝜈-

reliable (3 + 𝜖)-spanners with 𝑛 · �̃� (𝜈−1𝜖−2 log2 𝑛 log2 Φ) edges,
and planar metrics admit oblivious 𝜈-reliable (3 + 𝜖)-spanners with
𝑛 · �̃� (𝜈−1𝜖−4 log2 Φ) edges (see Table 2).

The reliable spanner constructions of Har-Peled et al. [69] are
based on sparse covers. A (𝜏, 𝜌)-sparse cover is a collection C of

clusters such that every point belongs to at most 𝜏 clusters, and

for every pair 𝑥,𝑦 ∈ 𝑋 , there is a cluster 𝐶 ∈ C containing both

𝑥,𝑦 ∈ 𝐶 where diam(𝐶) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦); 𝜌 is called the stretch of

the cover C. They then treat each cluster in C as a uniform met-

ric, construct a reliable spanner for each cluster, and return the

union of all the constructed spanners. Thus the main task becomes

constructing a reliable spanner for the uniform metric. Specifically,

instead of the oblivious 𝜈-reliable 1-spanner for the line constructed

in [37], Har-Peled et al. [69] constructed an oblivious 𝜈-reliable

2-spanner for the uniform metric, which is the best stretch possi-

ble for subquadratic size spanners (see full version [62]). Indeed,

this additional factor 2 appears in the stretch parameter in all the

spanners in [69]. Most prominently, for trees they constructed an

(𝑂 (𝜖−1 logΦ log𝑛), 2 + 𝜖)-sparse cover, resulting in a stretch 4 + 𝜖

spanner,
5
while the natural lower bound is 2 (see full version [62]).

A similar phenomenon occurs for planar graphs. An additional

drawback in the sparse cover based approach of [69] is its depen-

dency on the aspect ratio Φ (which a priori can be unbounded). This

dependency on the aspect ratio is inherent in their technique and

cannot be avoided (see Lemma 20 in [69]).

1.1 Our Contribution
Our major contribution is to the theory of locality-sensitive or-

derings. Specifically, we significantly improve the parameters of

LSO in doubling metrics
1
, and extend the idea of LSO to general

metrics, as well as to topologically structured metrics. This is done

by introducing left-sided LSO and triangle-LSO (see Table 1). LSO’s

are a powerful tool enabling one to reduce many problems to the

line. LSO’s already have many applications in computational ge-

ometry [42]; we expect that our LSO for doubling metrics, as well

as those for general and topologically structured graphs, will find

many additional applications in the future. Next, we use these newly

introduced LSO’s (or improved in the case of doubling) to construct

oblivious reliable spanners. Our constructions have smaller stretch

(optimal in the case of topologically structured metrics) and smaller

sparsity (see Table 2). Below we describe each type of LSO in detail,

and which spanners it was used to construct. Our constructions

of LSO for general and doubling metrics are going through the

construction of ultrametric covers. An ultrametric cover is a col-

lection of dominating ultrametrics such that the distance between

every pair of points is well approximated by some ultrametric in

the collection. We construct the first ultrametric cover for doubling

metrics with stretch 1+𝜖 (previously only tree covers were known),

5
With an additional effort, [69] reduced the stretch of the spanner to 3+𝜖 . This analysis
is tight, and their technique cannot give a reliable spanner with a stretch factor smaller

than 3.
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Table 1: Summery of all known results, on all the different
types of locality sensitive orderings (LSO). 𝑘 ∈ N is an integer,
𝜖 ∈ (0, 1) is an arbitrarily small parameter. ★ denotes the full
version of this paper [62].

LSO type Metric Space # of orderings (𝜏) Stretch Ref

(Classic) LSO

Euclidean space R𝑑 𝑂 (𝜖)−𝑑 · log 1

𝜖 𝜖 [42]

Doubling dimension 𝑑
𝑂 (𝜖−1 · log𝑛)𝑂 (𝑑 ) 𝜖 [42]

𝜖−𝑂 (𝑑 ) 𝜖 Cor. 4.4

Triangle-LSO

General metric �̃� (𝑛1/𝑘 · 𝜖−1) 2𝑘 + 𝜖 Cor. 5.3

Ultrametric 1 1 Lem. 5.2

Left-sided LSO

Tree log𝑛 1 ★

Treewidth 𝑘 𝑘 · log𝑛 1 ★

Planar graph
1

𝜖 · log2 𝑛 1 + 𝜖 ★

Minor Free
1

𝜖 · log2 𝑛 1 + 𝜖 ★

and improve the stretch parameter in the ultrametric covers of

general metrics (see Table 3). Finally, a crucial ingredient when

one constructs reliable spanners using LSO is reliable spanners for

the line. Buchin et al. [36, 37] constructed such spanners; however

their spanners have Ω(log𝑛) hops, which will incur additional log𝑛
factor in the stretch (in all cases other than Euclidean/doubling).

To avoid this overhead, we construct a 2-hop reliable spanner for

the line, and a 2-hop left spanner, which is a newly defined type

of spanner suitable for our left-LSO (see Table 4). See Figure 1 for

a graphic illustration of how the different parts in the paper are

related. Finally, we answer an open question by Har-Peled [67] re-

garding sub-graph reliable spanners, by providing matching upper

and lower bounds for reliable connectivity preservers.

Classic LSO. . Chan et al. [42] constructed a(
(𝜖−1 · log𝑛)𝑂 (𝑑 ) , 𝜖

)
-LSO for metric spaces of doubling di-

mension 𝑑 . Applying the (implicit) framework of [36, 37] yields

a reliable spanner with 𝑛 · (𝜖−1 · log𝑛)𝑂 (𝑑 )
edges. In this work,

we completely remove the dependency on 𝑛 of the number of

orderings. Specifically, we construct an

(
𝜖−𝑂 (𝑑 ) , 𝜖

)
-LSO for

doubling metrics (Corollary 4.4); this immediately implies reliable

spanners for metric spaces of doubling dimension 𝑑 with the same

performance, up to the dependency on 𝜖 , as for Euclidean spaces

(Corollary 4.6).

Triangle LSO. . A (𝜏, 𝜌)-triangle LSO for a metric space (𝑋,𝑑𝑋 )
is a collection Σ of at most 𝜏 linear orderings over 𝑋 , such that for

every 𝑥,𝑦 ∈ 𝑋 , there is an ordering 𝜎 ∈ Σ such that for every two

points 𝑧, 𝑞 ∈ 𝑋 satisfying 𝑥 ⪯𝜎 𝑧 ⪯𝜎 𝑞 ⪯𝜎 𝑦 (or 𝑦 ⪯𝜎 𝑧 ⪯𝜎 𝑞 ⪯𝜎 𝑥 )

it holds that 𝑑𝑋 (𝑧, 𝑞) ≤ 𝜌 ·𝑑𝑋 (𝑥,𝑦) (Definition 5.1). Note that every

(𝜏, 𝜌)-triangle LSO is also a (𝜏, 𝜌)-LSO; however, a (𝜏, 𝜌)-LSO is

only a (𝜏, 2𝜌 + 1)-triangle LSO (by the triangle inequality). Hence

a triangle-LSO is preferable to the classic LSO. We observe that

ultrametrics admit a (1, 1)-triangle-LSO (Lemma 5.2), and show

that general 𝑛-point metric spaces admit an

(
�̃� (𝑛

1

𝑘 · 𝜖−1), 2𝑘 + 𝜖

)
-

triangle-LSO (Corollary 5.3).

We then prove ameta-theorem stating that everymetric space ad-

mitting a (𝜏, 𝜌)-triangle LSO has an oblivious 𝜈-reliable 2𝜌-spanner

with𝑛𝜏 ·𝑂
(
log

2 𝑛 + 𝜈−1𝜏 log𝑛 · log log𝑛
)
edges (Theorem 5.4). This

gives oblivious reliable spanners for ultrametrics and general metric

spaces. Our spanners for general metrics have significantly smaller

stretch compared to [69] (8𝑘 compared to 512𝑘 4
), this constant is

highly important as it governs the parameter in the power of 𝑛.

An additional advantage is that we remove the dependency on the

aspect ratio (which a priori can be unbounded).

Left-sided LSO. . A (𝜏, 𝜌)-left-sided LSO for a metric space

(𝑋,𝑑𝑋 ) is a collection Σ of linear orderings over subsets of 𝑋 , called

partial orderings, such that every point 𝑥 belongs to at most 𝜏 partial

orderings, and for every 𝑥,𝑦 ∈ 𝑋 , there is a partial ordering 𝜎 ∈ Σ
such that for every two points 𝑥 ′, 𝑦′ ∈ 𝑋 satisfying 𝑥 ⪯𝜎 𝑥 ′ and
𝑦′ ⪯𝜎 𝑦, it holds that 𝑑𝑋 (𝑥 ′, 𝑦′) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦) (see the full version
[62] for formal definition and statements). Note that the stretch
guarantee of a (𝜏, 𝜌)-left-sided LSO implies that of a (𝜏, 𝜌)-LSO (but

not the vice versa). However, there could be Ω(𝑛) (partial) orderings
in a (𝜏, 𝜌)-left-sided LSO. By lifting the restriction on the total num-

ber of partial orderings, we can construct a left-sided LSO with an

optimal stretch of 1 or a nearly optimal stretch of 1 + 𝜖 ; see Table 1.
This small stretch ultimately leads to the (nearly) optimal stretch

for the reliable spanners of tree and planar metrics constructed in

this work, which is not attainable in previous work [69].

We then prove a meta-theorem stating that every metric space

admitting a (𝜏, 𝜌)-left-sided LSO has an oblivious 𝜈-reliable 2𝜌-

spanner with 𝑛 · 𝑂 (𝜈−1𝜏2 log𝑛) edges (see full version [62]). We

show that 𝑛-vertex trees admit a (log𝑛, 1)-left-sided LSO and

conclude that trees have oblivious 𝜈-reliable 2-spanners with

𝑛 ·𝑂 (𝜈−1 log3 𝑛) edges. Note that the stretch parameter 2 is optimal.

Later, we show that planar graphs admit a ( 1𝜖 log
2 𝑛, 1+𝜖)-left-sided

LSO for every 𝜖 ∈ (0, 1). An oblivious 𝜈-reliable (2 + 𝜖)-spanner
with 𝑛 ·𝑂 (𝜈−1𝜖−2 log5 𝑛) edges follows. The same results also hold

for bounded treewidth graphs and graphs excluding a fixed minor.

Ultrametric cover. A (𝜏, 𝜌)-tree cover for a metric space (𝑋,𝑑𝑋 )
is a set T of 𝜏 dominating trees

3
such that the distance between

every pair of points is preserved up to a factor 𝜌 in at least one tree

(∀𝑢, 𝑣, min𝑇 ∈T 𝑑𝑇 (𝑢, 𝑣) ≤ 𝜌 · 𝑑𝑋 (𝑢, 𝑣)). When all trees in the cover

are ultrametrics, we call it an ultrametric cover (Definition 3.2). The

first study on tree covers was for Euclidean spaces by Arya et al. [9]
who constructed the so-called Dumbbell trees. For general met-

rics, Mendel and Naor [79] (implicitly) constructed an ultrametric

cover from Ramsey type embeddings. These covers actually have

a stronger guarantee, where every vertex 𝑣 is guaranteed to have

an ultrametric in the cover approximating its shortest path tree

(∀𝑣∃𝑇∀𝑢, 𝑑𝑇 (𝑣,𝑢) ≤ 𝜌 · 𝑑𝑋 (𝑣,𝑢)). There is a long line of work on

Ramsey-type embeddings [2, 13, 14, 17, 23, 35, 59, 61, 79, 80]. The

state of the art covers follow from Naor and Tao [80], and implies a

(2𝑒 · 𝑘,𝑂 (𝑘 · 𝑛1/𝑘 )) ultrametric cover. For doubling metrics, Bartal,

Fandina, and Neiman [15] constructed a (1 + 𝜖, 𝜖−𝑂 (𝑑 ) ) tree cover.
We refer to [15] for further results and background on tree covers.

We observe that every ultrametric admits a (1, 1)-triangle LSO,
which implies that given a (𝜏, 𝜌)-ultrametric cover, one can con-

struct a (𝜏, 𝜌)-triangle LSO (Lemma 5.2). Indeed, the main step in

our construction of a triangle LSO for general metrics is a construc-

tion of a

(
�̃� (𝑛

1

𝑘 · 𝜖−1), 2𝑘 + 𝜖

)
-ultrametric cover (Theorem 3.3). Our

construction provides a constant improvement in the stretch pa-

rameter (equivalently, a polynomial improvement in the number of

ultrametrics in the cover) compared to previous results.
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Doubling Metrics

Ultrametric Cover

General Metrics

LSOTriangle Left-Sided

Minor-free Metrics

Reliable Spanners

(tree,planar,...)

2-hop reliable
left-spanner

for path

2-hop reliable
spanner for path LSO

reliable spanner
for path LSO

(Definition 3.2)

(Lemma 5.7) (Definition 5.1)

Figure 1: Relationships between different concepts; new concepts introduced in this papers are green-shaded.

Table 2: Comparison between previous and new constructions of reliable spanners. ★ denotes the full version of this paper
[62]. All spanners (except [32]) constructed on 𝑛-point metric spaces with reliability parameter 𝜈 . For doubling metrics, we
recover the same strong results previously known only for Euclidean space. Both lower bounds hold for the uniform metric.
For all other metric spaces, we improve both stretch and sparsity, and remove the undesirable dependence on the aspect ratio Φ.
For trees and planar graphs, the stretch was improved from 3 + 𝜖, to the best possible stretch 2. For general graphs, our spanner
has stretch 8𝑘 , considerably improving the constant hiding in [69]. This constant governs the parameter in the power of 𝑛.

Family stretch guarantee size ref

Euclidean

(R𝑑 , ∥ · ∥2)

𝑂 (1) Deterministic Ω(𝑛 log𝑛) [32]

1 + 𝜖 Deterministic 𝑛 · �̃� (𝜖)−7𝑑𝜈−6 · �̃� (log𝑛) [36]

1 + 𝜖 Oblivious 𝑛 · �̃� (𝜖)−2𝑑 · �̃� (𝜈−1 (log log𝑛)2) [37]

Doubling

dimension 𝑑

1 + 𝜖 Deterministic 𝑛 · 𝜖−𝑂 (𝑑 )𝜈−6 · �̃� (log𝑛) Corollary 4.6

1 + 𝜖 Oblivious 𝑛 · 𝜖−𝑂 (𝑑 )𝜈−1 log𝜈−1 · �̃� (log log𝑛)2 Corollary 4.6

General

metric

512 · 𝑘 4
Oblivious �̃� (𝑛1+1/𝑘 · 𝜈−1) · log2 Φ [69]

8𝑘 + 𝜖 Oblivious �̃� (𝑛1+1/𝑘 · 𝜖−2) · 𝜈−1 Theorem 5.5

Ultrametric,

Tree, planar

𝑘 Deterministic Ω(𝑛1+1/𝑘 ) [69]

𝑘 < 2 Oblivious Ω(𝑛2) ★

Ultrametric

2 + 𝜖 Oblivious 𝑛 · �̃� (𝜈−1𝜖−2 log2 Φ) [69]

2 (tight) Oblivious 𝑛 · �̃�
(
log

2 𝑛 + 𝜈−1 log𝑛
)

Corollary 5.6

Tree

3 + 𝜖 Oblivious 𝑛 · �̃� (𝜈−1𝜖−2 log2 𝑛 log2 Φ) [69]

2 (tight) Oblivious 𝑛 ·𝑂 (𝜈−1 log3 𝑛) ★

Treewidth 𝑘 2 (tight) Oblivious 𝑛 ·𝑂 (𝜈−1𝑘2 log3 𝑛) ★

Planar

3 + 𝜖 Oblivious 𝑛 · �̃� (𝜈−1𝜖−4 log2 𝑛 log2 Φ) [69]

2 + 𝜖 (tight) Oblivious 𝑛 ·𝑂 (𝜈−1𝜖−2 log5 𝑛) ★

Minor-free 2 + 𝜖 (tight) Oblivious 𝑛 ·𝑂 (𝜈−1𝜖−2 log5 𝑛) ★

A more structured case is that of a (𝜏, 𝜌, 𝑘, 𝛿)-ultrametric cover,

where in addition to being a (𝜏, 𝜌)-ultrametric cover, we require

that each ultrametric will be a 𝑘-HST of degree at most 𝛿 (see Def-

inition 3.1). We show that every Ω( 1𝜖 )-HST of degree bounded

by 𝛿 admits a (classic) ( 𝛿
2
, 𝜖)-LSO (Lemma 4.2). It follows that

a (𝜏, 𝜌,Ω( 1𝜖 ), 𝛿)-ultrametric cover implies a

(
𝜏 · 𝛿

2
, (1 + 𝜖)𝜌

)
-LSO

(Lemma 4.3). The trees in the tree cover for doubling metrics of [15]

are far from being ultrametrics and cannot be used in our frame-

work. We then construct an (𝜖−𝑂 (𝑑 ) , 1 + 𝜖, 1𝜖 , 𝜖
−𝑂 (𝑑 ) )-ultrametric

cover for spaces with doubling dimension 𝑑 (Theorem 3.4), which

implies the respective LSO. Interestingly, having such an ultramet-

ric cover is a characterizing property for metric spaces of bounded

doubling dimension (Theorem 3.4). See Table 3 for a summary.

2-hop reliable spanners for the path graph. Using (different

types of) LSO, we can reduce the problem of constructing reli-

able spanners for different complicated metric spaces to that of

constructing reliable spanners for the 1-dimensional path graph.

Buchin et al. [37] constructed an oblivious 𝜈-reliable 1-spanner
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Table 3: New and previous constructions of tree and ultra-
metric covers.

Space type stretch # of trees ref
Euclidean R𝑑 tree 1 + 𝜖 𝑂 (( 𝑑𝜖 )

𝑑
log

𝑑
𝜖 ) [9]

Doubling

dimension 𝑑

ultrametric 𝑂 (𝑑2) 𝑂 (𝑑 log𝑑) [41]

tree 1 + 𝜖 𝜖−𝑂 (𝑑 )
[16]

ultrametric 1 + 𝜖 𝜖−𝑂 (𝑑 )
Thm. 3.4

General

metric

ultrametric 2𝑒 · 𝑘 𝑂 (𝑘 · 𝑛1/𝑘 ) [79, 80]

ultrametric 2𝑘 + 𝜖 �̃� (𝑛
1

𝑘 · 𝜖−1) Thm. 3.3

with 𝑛 · �̃�
(
𝜈−1 (log log𝑛)2

)
edges for the path graph. However, the

shortest path between two given vertices in their spanner could

contain Ω(log𝑛) edges (called hops). While (log𝑛)-hop spanners

are acceptable when applying them upon a (𝜏, 𝜖)-LSO, using a ℎ-

hop spanner of the path graph for (𝜏, 𝜌)-triangle-LSO will result

in distortion ℎ · 𝜌 . It is therefore desirable to minimize the number

of hops used by the spanner. Having a 1-hop spanner will require

Ω(𝑛2) edges; we thus settle for the next best thing: a 2-hop reliable

spanner. Specifically, we construct an oblivious 𝜈-reliable, 2-hop

1-spanner with 𝑛 · 𝑂
(
log

2 𝑛 + 𝜈−1 log𝑛 · log log𝑛
)
edges for the

path graph (Lemma 5.7). This spanner is later used in our meta The-

orem 5.4 to construct reliable spanners for metric spaces admitting

a (𝜏, 𝜌)-triangle-LSO.
For the left-sided LSO case, we also need a 2-hop spanner for

the path graph. However, the shortest 2-hop path between the

𝑖’th and the 𝑗 ’th vertices for 𝑖 < 𝑗 must go through a vertex to

the left of 𝑖 , i.e., a vertex in [1, 𝑖] (as opposed to a vertex in [𝑖, 𝑗]
in the triangle-LSO case). This requirement inspires us to define

a left-spanner (see the full version [62] for formal definition and

statements); we then construct an oblivious 𝜈-reliable 2-hop left-

spanner with 𝑛 ·𝑂 (𝜈−1 log𝑛) edges. The left-spanner is later used
to construct a reliable spanner from a left-sided LSO.

Connectivity preservers. While research on reliable spanners for

metric spaces has been fruitful, nothing is known for reliable span-

ners of graphs, where we require the spanner to be a subgraph of the
input graph. In a recent talk, Har-Peled [67] asked a “probably much

harder question”: whether it is possible to construct a non-trivial

subgraph reliable spanner. We show that, even for a much simpler

problem where one seeks a subgraph to only preserve connectivity
for vertices outside 𝐵+, the faulty extension of 𝐵, the subgraph must

have Ω(𝑛2) edges in the worst case. Indeed, our lower bound is

much more general: it applies to 𝑔-reliable connectivity preservers

for some function 𝑔. A 𝑔-reliable connectivity preserver of a graph

𝐺 = (𝑉 , 𝐸) is a subgraph 𝐻 of 𝐺 such that for every attack 𝐵 ⊆ 𝑉 ,

there is a superset 𝐵+ ⊇ 𝐵 of size at most 𝑔( |𝐵 |), such that for every

𝑢, 𝑣 ∈ 𝑉 \ 𝐵+, if 𝑢 and 𝑣 are connected in 𝐺 \ 𝐵, then they are also

connected in 𝐻 \ 𝐵. Observe that a 𝜈-reliable spanner defined in

Definition 1.2 is a 𝑔-reliable (non-subgraph) spanners for the linear

function 𝑔(𝑥) = (1+𝜈)𝑥 . We showed that there is an 𝑛-vertex graph

𝐺 such that every oblivious 𝑔𝑘 -reliable connectivity preserver has

Ω(𝑛1+1/𝑘 ) edges for any function 𝑔 = 𝑂 (𝑥𝑘 ). Taking 𝑘 = 1 gives a

lower bound Ω(𝑛2) on the number of edges of subgraph 𝜈-reliable
spanners. On the positive side, we provide a construction of a de-
terministic connectivity preserver matching the lower bound (see

the full version [62]).

1.2 Related Work
The tradeoff between stretch and sparsity (number of edges) of

(regular) 𝑡-spanners has been extensively studied [8, 43, 63, 68, 75,

82]; see the recent survey of Ahmed et al. [4], and the book [81]

and references therein for more details. The bottom line is that

𝑛-point metric spaces admit (2𝑘 − 1)-spanners (for every integer

𝑘) with𝑂 (𝑛1+1/𝑘 ) edges [43], while the metric induced by 𝑛 points

in 𝑑 dimensional Euclidean space admits a (1 + 𝜖)-spanner with
𝑛 ·𝑂 (𝜖)1−𝑑 edges [8]. Similarly,𝑛-point metric spaces with doubling

dimension 𝑑 admit (1 + 𝜖)-spanners with 𝑛 · 𝜖−𝑂 (𝑑 )
edges [41].

For vertex-fault-tolerant spanner, it was shown that every 𝑛-

point set in R𝑑 , or more generally in a space of doubling dimension

𝑑 , admits an 𝑓 -vertex-fault-tolerant (1+𝜖)-spanner with 𝜖−𝑂 (𝑑 ) · 𝑓 ·𝑛
edges [76, 77, 84]. For general graphs, after a long line of works

[25, 26, 28, 44, 47, 48], it was shown that every 𝑛-vertex graph

admits an efficiently constructible 𝑓 -vertex-fault-tolerant (2𝑘 − 1)-
spanner with 𝑂 (𝑓 1−1/𝑘 · 𝑛1+1/𝑘 ) edges, which is optimal assuming

the Erdös’ Girth Conjecture [54]. A related notion is that of a vertex-

fault-tolerant (VFT) emulator. Unlike spanners, emulators are not

required to be subgraphs, and the weight of an emulator edge is

determined w.r.t. the faulty set. It was recently shown that vertex-

fault-tolerant (VFT) emulators are asymptotically sparser from their

spanner counterparts [24].

In addition to vertex-fault-tolerant (VFT) spanners, also edge-

fault-tolerant (EFT) spanners were studied, where the guarantee is

to withstand up to 𝑓 -edge faults (as opposed to 𝑓 vertex faults in

VFT). Bodwin, Dinitz, and Robelle [27] constructed an 𝑓 -EFT 2𝑘 −1-

spanners with 𝑂 (𝑘2 𝑓
1

2
− 1

2𝑘 · 𝑛1+
1

𝑘 + 𝑘 𝑓 𝑛)
/
𝑂 (𝑘2 𝑓

1

2 · 𝑛1+
1

𝑘 + 𝑘 𝑓 𝑛)
edges for odd

/
even values of 𝑘 respectively. There is also a lower

bound of Ω(𝑓
1

2
− 1

2𝑘 𝑛1+1/𝑘 ) [25].
Abam et al. [1] introduced the notion of region fault-tolerant

spanners for the Euclidean plane. They showed that one can con-

struct a 𝑡-spanner with𝑂 (𝑛 log𝑛) edges in such a way that if points

belonging to a convex region are deleted, the residual graph is still

a spanner for the remaining points.

Spanners with low hop diameter for Euclidean spaces of fixed

dimension were studied in the pioneering work of Arya et al. [10].
State of the art is a (1 + 𝜖)-spanner constructible in𝑂 (𝑛 log𝑛) time

by Solomon [83] that has 𝑂 (𝑛𝛼𝑘 (𝑛)) 6
edges and hop diameter 𝑘 .

In addition to having a small number of edges, it is desirable

to have a spanner with a small total edge weight, called a light
spanner. Light spanners have been thoroughly studied in the span-

ner literature [7, 29, 30, 43, 45, 46, 51, 52, 64, 65, 75]. Sparse (and

light) spanners were constructed efficiently in different compu-

tational models such as LOCAL [72], CONGEST [50], streaming

[5, 18, 20, 49, 60, 73], massive parallel computation (MPC) [22] and

dynamic graph algorithms [19, 21].

2 PRELIMINARIES
Let (𝑋,𝑑𝑋 ) be a metric space. The aspect ratio, or spread, denoted

by Φ, is defined as follows: Φ =
max𝑥,𝑦∈𝑋 𝑑𝑋 (𝑥,𝑦)
min𝑥≠𝑦∈𝑋 𝑑𝑋 (𝑥,𝑦) . We denote by [𝑛]

the set of integers {1, 2, . . . , 𝑛}. For two integers 𝑎 ≤ 𝑏, we define

[𝑎 : 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏}.
6𝛼𝑘 (𝑛) is the inverse function of a very fast growing function at level 𝑘 of the the

primitive recursive hierarchy; see [83] for a more formal description.
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Table 4: Construction of reliable spanners for the line. [36] and [37] constructed sparse (both deterministic and oblivious)
reliable 1-spanners for points on the line. However, their spanners have 𝑂 (log𝑛) hops, which will incur distortion 𝑂 (𝜌 · log𝑛)
when applied on a (𝜏, 𝜌)-triangle LSO (with 𝜌 > 1). We construct a 1-spanner with only 2-hops, which we later use to construct a
reliable spanner from a triangle-LSO. In addition, we construct a 2-hop left spanner for the line, which is later used to construct
a reliable spanner from a left-sided LSO.

Type guarantee size hops ref

1 spanner

Deterministic 𝑛 ·𝑂 (log𝑛 · 𝜈−6) 𝑂 (log𝑛) [36]

Oblivious 𝑛 ·𝑂 (𝜈−1 · log𝜈−1) 𝑂 (log𝑛) [37]

Oblivious 𝑛 ·𝑂
(
log

2 𝑛 + 𝜈−1 log𝑛 · log log𝑛
)

2 Lemma 5.7

Left spanner Oblivious 𝑛 ·𝑂 (𝜈−1 log𝑛) 2 Full version [62]

We use �̃� notation hides poly-logarithmic factors. That is �̃� (𝑓 ) =
𝑂 (𝑓 ) · log𝑂 (1) (𝑓 ).

Let 𝐺 be a graph. We denote the vertex set and edge set of 𝐺 by

𝑉 (𝐺) and 𝐸 (𝐺), respectively. When we want to explicitly specify

the vertex set 𝑉 and edge set 𝐸 of 𝐺 , we write 𝐺 = (𝑉 , 𝐸). If 𝐺 is

a weighted graph, we write 𝐺 = (𝑉 , 𝐸,𝑤) with𝑤 : 𝐸 → R+ being

the weight function on the edges of 𝐺 . For every pair of vertices

𝑥,𝑦 ∈ 𝑉 , we denote by 𝑑𝐺 (𝑥,𝑦) the shortest path distance between

𝑥 and 𝑦 in 𝐺 = (𝑉 , 𝐸,𝑤). Given a path 𝑃 ⊆ 𝐺 , we define the hop
length of 𝑃 to be the number of edges on the path.

A 𝑡-spanner for a metric space (𝑋,𝑑𝑋 ) is a weighted graph

𝐻 (𝑉 , 𝐸,𝑤) that has 𝑉 = 𝑋 , 𝑤 (𝑢, 𝑣) = 𝑑𝑋 (𝑢, 𝑣) for every edge

(𝑢, 𝑣) ∈ 𝐸 and 𝑑𝑋 (𝑥,𝑦) ≤ 𝑑𝐻 (𝑥,𝑦) ≤ 𝑡 · 𝑑𝑋 (𝑥,𝑦) for every pair

of points 𝑥,𝑦 ∈ 𝑋 . We say that a 𝑡-spanner 𝐻 has hop number ℎ

if for every pair of vertices 𝑥,𝑦, there is an 𝑥 − 𝑦 path 𝑃 in 𝐻 of at

most ℎ hops such that𝑤𝐻 (𝑃) ≤ 𝑡 · 𝑑𝑋 (𝑥,𝑦).
The path graph 𝑃𝑛 contains 𝑛 vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛 and there

is (unweighted) edge between 𝑣𝑖 and 𝑣 𝑗 iff |𝑖 − 𝑗 | = 1. A path

𝑣𝑖1 , 𝑣𝑖2 , . . . 𝑣𝑖𝑠 is monotone iff for every 𝑗 , 𝑖 𝑗 < 𝑖 𝑗+1 . Note that

if a spanner 𝐻 contains a monotone path between 𝑣𝑖 , 𝑣 𝑗 then

𝑑𝐻 (𝑣𝑖 , 𝑣 𝑗 ) = 𝑑𝑃𝑛 (𝑣𝑖 , 𝑣 𝑗 ) = |𝑖 − 𝑗 |. We sometimes identify vertices

of 𝑃𝑛 with numbers in {1, 2, . . . , 𝑛}, and refer to {1, 2, . . . , 𝑛} as the
vertex set of 𝑃𝑛 .

A metric (𝑋,𝑑𝑋 ) has doubling dimension 𝑑 if every ball of radius

𝑟 can be covered by at most 2
𝑑
balls of radius 𝑟/2. The following

lemma gives the standard packing property of doubling metrics

(see, e.g., [66]).

Lemma 2.1 (Packing Property). Let (𝑋,𝑑) be a metric space with
doubling dimension 𝑑 . If 𝑆 ⊆ 𝑋 is a subset of points with minimum
interpoint distance 𝑟 that is contained in a ball of radius 𝑅, then

|𝑆 | =
(
2𝑅
𝑟

)𝑂 (𝑑 )
.

In the following lemma, we show that when constructing oblivi-

ous spanners, it is enough to bound the number of edges in expec-

tation to obtain a worst-case guarantee.

Lemma 2.2. Consider an 𝑛-vertex graph𝐺 = (𝑉 , 𝐸,𝑤) that admits
an oblivious 𝜈-reliable 𝑡-spanner with𝑚 edges in expectation. Then𝐺
admits an oblivious 2𝜈-reliable 𝑡-spanner with 2𝑚 edges in the worst
case.

Proof. Formally, there is a distributionD over spanners𝐻 such

that for every attack 𝐵 ⊆ 𝑉 , E[|𝐵+\𝐵 |] ≤ 𝜈 |𝐵 |, and E[|𝐻 |] ≤ 𝑚. Let

D′
be the distribution over spanners 𝐻 obtained by conditioning

D on the event |𝐻 | ≤ 2𝑚. Clearly, all the spanners in supp{D′}
have at most 2𝑚 edges. Furthermore, for every attack 𝐵 ⊆ 𝑉 , it

holds that

E𝐻∼D′ [|𝐵+ \ 𝐵 |]
= E𝐻∼D [|𝐵+ \ 𝐵 |

�� |𝐻 | ≤ 2𝑚]

=
1

Pr [|𝐻 | ≤ 2𝑚] ·
(
E𝐻∼D′ [|𝐵+ \ 𝐵 |

�� |𝐻 | ≤ 2𝑚] · Pr [|𝐻 | ≤ 2𝑚]
)

≤ 1

Pr [|𝐻 | ≤ 2𝑚] · E𝐻∼D [|𝐵+ \ 𝐵 |] ≤ 2𝜈 · |𝐵 | ,

where in the last inequality, we use Markov’s inequality. □

3 ULTRAMETRIC COVERS
Ultrametric. An ultrametric (𝑋,𝑑) is a metric space satisfying

a strong form of the triangle inequality, that is, for all 𝑥,𝑦, 𝑧 ∈ 𝑋 ,

𝑑 (𝑥, 𝑧) ≤ max {𝑑 (𝑥,𝑦), 𝑑 (𝑦, 𝑧)}. A related notion is a 𝑘-hierarchical

well-separated tree (𝑘-HST).

Definition 3.1 (𝑘-HST). A metric (𝑋,𝑑𝑋 ) is a 𝑘-hierarchical well-
separated tree (𝑘-HST) if there exists a bijection 𝜑 from 𝑋 to leaves

of a rooted tree 𝑇 in which:

(1) Each node 𝑣 ∈ 𝑇 is associated with a label Γ𝑣 such that Γ𝑣 = 0

if 𝑣 is a leaf and Γ𝑣 ≥ 𝑘Γ𝑢 if 𝑣 is an internal node and 𝑢 is any

child of 𝑣 .

(2) 𝑑𝑋 (𝑥,𝑦) = Γlca(𝜑 (𝑥 ),𝜑 (𝑦) ) where lca(𝑢, 𝑣) is the least com-

mon ancestor of any two given nodes 𝑢, 𝑣 in 𝑇 .

It is well known that any ultrametric is a 1-HST, and any 𝑘-HST

is an ultrametric (see [17]).

Ultrametric cover. Consider a metric space (𝑋,𝑑𝑋 ), a distance
measure 𝑑𝑌 is said to be dominating if ∀𝑥,𝑦 ∈ 𝑋 , 𝑑𝑋 (𝑥,𝑦) ≤
𝑑𝑌 (𝑥,𝑦). A tree/ultrametric over 𝑋 is said to be dominating if their

metric is dominating. Bartal, Fandina, and Neiman [15] studied tree
covers: a metric space (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌)-tree cover if there are
at most 𝜏 dominating trees {𝑇1,𝑇2, . . . ,𝑇𝜏 } such that 𝑋 ⊆ 𝑉 (𝑇𝑖 )
for every 𝑖 ∈ [𝜏] and for every pair of points 𝑥,𝑦 ∈ 𝑋 , there is

some tree 𝑇𝑖 where 𝑑𝑇𝑖 (𝑥,𝑦) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦). Bartal et al. [15] ob-
served that the previous constructions of Ramsey trees

7
[2, 79, 80]

give an (�̃� (𝑛1/𝑘 ), 2𝑒𝑘)-tree cover for general metrics, and explicitly

constructed an (𝜖−𝑂 (𝑑 ) , 1 + 𝜖)-tree cover for metric spaces with

7
Ramsey trees have additional de‘sired property compared to general tree covers: for

every vertex 𝑣, there is a single tree in the cover satisfying all its pairwise distances,

as oppose to union of all the trees in a general tree cover.
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doubling dimension 𝑑 . Here we initiate the study of ultrametric

covers.

Definition 3.2 (Ultrametric Cover). A (𝜏, 𝜌)-ultrametric cover for
a space (𝑋,𝑑) is a collection of at most 𝜏 dominating ultrametrics

U = {(𝑈𝑖 , 𝑑𝑈𝑖
)}𝜏

𝑖=1
over 𝑋 , such that for every 𝑥,𝑦 ∈ 𝑋 there is an

ultrametric𝑈𝑖 for which 𝑑𝑈𝑖
(𝑥,𝑦) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦).

If every metric (𝑈 ,𝑑𝑈 ) ∈ U is a 𝑘-HST and the corresponding

tree 𝑇𝑈 of 𝑈 has maximum degree at most 𝛿 , we say that U is a

(𝜏, 𝜌, 𝑘, 𝛿)-ultrametric cover of (𝑋,𝑑𝑋 ).

Note that ultrametrics are much more structured than general

trees. For example, every ultrametric embeds isometrically into

ℓ2, while trees require distortion
√︁
log log𝑛 [34, 78]. Later, we will

show how to use ultrametric covers to construct locality-sensitive

orderings (see Lemma 4.3 and Lemma 5.2).

The first main result of this section is Theorem 3.3 where we

construct an ultrametric cover for general metrics.

Theorem 3.3 (Ultrametric Cover For General Metrics). For
every 𝑘 ∈ N and 𝜖 ∈ (0, 1

2
), every 𝑛-point metric space admits an(

𝑂 (𝑛
1

𝑘 · log𝑛 · 𝑘2

𝜖 · log 𝑘
𝜖 ), 2𝑘 + 𝜖

)
-ultrametric cover.

Interestingly, the tree cover in [15] for general metrics actually

consists of ultrametrics; in other words, Bartal et al. [15] obsereved
that Ramsey trees constitute an (�̃� (𝑛1/𝑘 ), 2𝑒𝑘)-ultrametric cover.

Thus, we obtain a polynomial improvement in the number of ultra-

metrics in the cover. Specifically, to guarantee stretch ≈ 2(𝑘 + 1),
our cover uses �̃� (𝑛1/𝑘 ) ultrametrics, while previous covers have

Ω(𝑛
𝑒

𝑘+1 ) ultrametrics.

Next, in Theorem 3.4 below, we show that every metric space

with doubling dimension 𝑑 admits an (𝜖−𝑂 (𝑑 ) , 1 + 𝜖, 1𝜖 , 𝜖
−𝑂 (𝑑 ) )-

ultrametric cover for any parameter 𝜖 ∈ (0, 1
6
). It turns out that

this property is actually a characterization of doubling spaces. The

proof of Theorem 3.4 is provided in Section 3.3.

Theorem 3.4 (Ultrametric Cover For Doubling Metrics).

Every metric space (𝑋,𝑑𝑋 ) with doubling dimension 𝑑 admits an
(𝜖−𝑂 (𝑑 ) , 1 + 𝜖, 1𝜖 , 𝜖

−𝑂 (𝑑 ) )-ultrametric cover for any parameter 𝜖 ∈
(0, 1

6
).

Conversely, if a metric space (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌, 𝑘, 𝛿)-
ultrametric cover for 𝑘 ≥ 2𝜌 , then it has doubling dimension
𝑑 ≤ log(𝜏𝛿).

The main tool in proving Theorems 3.3 and 3.4 is pairwise parti-
tion cover, a newly introduced notion, which is closely related to

the previously introduced stochastic/padded decompositions and

sparse covers [3, 11, 12, 56, 66, 74]. A partition P of a metric space

(𝑋,𝑑𝑋 ) is Δ-bounded if every cluster 𝐶 ∈ P has diameter at most

Δ.

Definition 3.5 (Pairwise Partition Cover Scheme). A collection of

partitions P = {P1, . . . ,P𝑠 } is (𝜏, 𝜌, 𝜖,Δ)-pairwise partition cover

if (a) 𝑠 ≤ 𝜏 , (b) every partition P𝑖 is Δ-bounded, and (c) for every

pair 𝑥,𝑦 such that
Δ
2𝜌 ≤ 𝑑𝑋 (𝑥,𝑦) ≤ Δ

𝜌 , there is a cluster 𝐶 in

one of the partitions P𝑖 such that 𝐶 contains both closed balls

𝐵(𝑥, 𝜖Δ), 𝐵(𝑦, 𝜖Δ).
A space (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌, 𝜖)-pairwise partition cover scheme if
for every Δ, it admits a (𝜏, 𝜌, 𝜖,Δ)-pairwise partition cover.

We will show that given a pairwise partition cover scheme, one

can construct an ultrametric cover. The proof appears in Section 3.1.

Lemma 3.6. Suppose that a metric space (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌, 𝜖)-
pairwise partition cover scheme for 𝜏 ∈ N, 𝜌 ≥ 1, and 𝜖 ∈ (0, 1

2
).

Then 𝑋 admits an
(
𝑂 ( 𝜏𝜖 log

𝜌
𝜖 ), 𝜌 (1 + 7𝜖)

)
-ultrametric cover.

Furthermore, every ultrametric in the cover is a Θ( 𝜌𝜖 )-HST.

In Section 3.2 we construct a pairwise partition cover for general

metrics:

Lemma 3.7. Every 𝑛-point metric space (𝑋,𝑑𝑋 ) admits an
(𝑂 (𝑛

1

𝑘 log𝑛), 2𝑘 + 𝛿, 𝛿
4𝑘 (2𝑘+𝛿 ) )-pairwise partition cover scheme for

any 𝛿 ∈ [0, 1] and integer 𝑘 ≥ 1.

We are now ready to prove Theorem 3.3:

Proof of Theorem 3.3. Let (𝑋,𝑑𝑋 ) be an 𝑛-point metric space,

and fix 𝛿 = 𝜖
8
. By Lemma 3.7, 𝑋 admits an (𝑂 (𝑛

1

𝑘 log𝑛), 2𝑘 +
𝛿, 𝛿

4𝑘 (2𝑘+𝛿 ) )-pairwise partition cover. By Lemma 3.6, 𝑋 admits an

ultrametric cover with𝑂 ( 𝑛
1

𝑘 log𝑛

𝛿
·4𝑘 (2𝑘 +𝛿) · log (2𝑘+𝛿 )4𝑘 (2𝑘+𝛿 )

𝛿
=

𝑂 (𝑛
1

𝑘 log𝑛 · 𝑘2

𝛿
· log 𝑘

𝛿
) = 𝑂 (𝑛

1

𝑘 log𝑛 · 𝑘2

𝜖 · log 𝑘
𝜖 ) ultrametrics, and

stretch (2𝑘 + 𝛿) (1 + 7𝛿
2𝑘 (2𝑘+𝛿 ) ) < 2𝑘 + 8𝛿 = 2𝑘 + 𝜖 . □

3.1 From Pairwise Partition Cover to
Ultrametric Cover: Proof of Lemma 3.6

Lemma 3.6 is a reduction from pairwise partition cover scheme to

ultrametric cover. In essence, an ultrametric is simply a hierarchi-

cal partition. Thus, this reduction takes unrelated partitions in all

possible scales, and combines them into hierarchical/laminar parti-

tions. Reductions similar in spirit were constructed in the context

of the Steiner point removal problem [58], stochastic Steiner point

removal [53], universal Steiner tree [38], and others. We follow here

a bottom-up approach, where the ratio between consecutive scales

in a single hierarchical partition (a.k.a. ultrametric) is 𝑂 ( 𝜌𝜖 ). When

constructing the next level in the hierarchical partition, we take

partitions from a pairwise partition cover of the current scale, and

slightly “round” them around the “borders” so that no previously

created cluster will be divided (see Figure 2). The argument is that

due to the large ratio between consecutive scales, the effects of this

rounding are marginal.

Proof of Lemma 3.6. Assume w.l.o.g. that the minimal pairwise

distance in 𝑋 is 1, while the maximal pairwise distance is Φ. Fix

𝑐 ≥ 1 to be determined later. For 𝑖 ≥ 0, set Δ𝑖 = 𝑐 · ( 4𝜌𝜖 )𝑖 , and let

P𝑖 = {P𝑖
1
, . . . ,P𝑖

𝜏 } be a (𝜏, 𝜌,Δ𝑖 )-padded partition cover (we assume

that P𝑖 has exactly 𝜏 partitions; we can enforce this assumption

by duplicating partitions if necessary). Fix some 𝑗 , let P−1
𝑗

be the

partition where each vertex is a singleton, and consider {P𝑖
𝑗
}𝑖≥−1.

We will inductively define a new set of partitions, enforcing it to be

a laminar system. The basic idea of doing this is to produce a tree

of partitions where the lower level is a refinement of the higher

level, and we do so by grouping a cluster at a lower level to one of

the clusters at a higher level separating it.
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The lowest level P−1
𝑗

where each set in the partition is a sin-

gleton, stays as-is. Inductively, for any 𝑖 ≥ 0, after constructing

˜P𝑖−1
𝑗

from P𝑖−1
𝑗

, we will construct
˜P𝑖
𝑗
from P𝑖

𝑗
using

˜P𝑖−1
𝑗

. Let

P𝑖
𝑗
=

{
𝐶1, . . . ,𝐶𝜙

}
be the clusters in the partition P𝑖

𝑗
. For each

𝑞 ∈ [1, 𝜙], let 𝑌𝑞 = 𝑋 \ ∪𝑎<𝑞𝐶𝑎 be the set of unclustered points

(w.r.t. level 𝑖 , before iteration 𝑞). Let𝐶′
𝑞 = 𝐶𝑞 ∩𝑌𝑞 be the cluster𝐶𝑞

restricted to vertices in 𝑌𝑞 , and let 𝑆𝐶′
𝑞
=

{
𝐶 ∈ ˜P𝑖−1

𝑗
| 𝐶 ∩𝐶′

𝑞 ≠ ∅
}

be the set of new level-(𝑖 − 1) clusters with non empty intersection

with 𝐶′
𝑞 . We set the new cluster 𝐶𝑞 = ∪𝑆𝐶′

𝑞
to be the union of

these clusters, and continue iteratively. See Figure 2 for illustration.

Clearly,
˜P𝑖−1
𝑗

is a refinement of
˜P𝑖
𝑗
. We conclude that

{
˜P𝑖
𝑗

}
𝑖≥−1

is

a laminar hierarchical set of partitions that refine each other.

We next argue by induction that
˜P𝑖
𝑗
has diameter Δ𝑖 (1 + 𝜖).

Consider 𝐶𝑞 ∈ ˜P𝑖
𝑗
; it consists of 𝐶′

𝑞 ⊆ 𝐶𝑞 ∈ P𝑖
𝑗
and of clus-

ters in
˜P𝑖−1
𝑗

intersecting 𝐶′
𝑞 . As the diameter of 𝐶′

𝑞 is bounded

by diam(𝐶𝑞) ≤ Δ𝑖 , and by the induction hypothesis, the diameter

of each cluster 𝐶 ∈ ˜P𝑖−1
𝑗

is bounded by (1 + 𝜖)Δ𝑖−1, we conclude
that the diameter of 𝐶𝑞 is bounded by

Δ𝑖 + 2 · (1 + 𝜖)Δ𝑖−1 = Δ𝑖

(
1 + 2(1 + 𝜖)

4𝜌
· 𝜖
)
≤ Δ𝑖 (1 + 𝜖) ,

since 𝜌 ≥ 1 and 𝜖 < 1.

Next we argue that
˜P𝑖 = { ˜P𝑖

1
, . . . , ˜P𝑖

𝜏 } is a (𝜏, (1+𝜖)𝜌, 0, (1+𝜖)Δ)-
pairwise partition cover. Observe that it contains 𝜏 partitions,

and we have shown that all the clusters have diameter at most

(1 + 𝜖)Δ. Thus, it remains to prove that for every pair 𝑥,𝑦 at dis-

tance 𝑑𝑋 (𝑢, 𝑣) ∈
[
(1+𝜖 )Δ𝑖

2(1+𝜖 )𝜌 ,
(1+𝜖 )Δ𝑖

(1+𝜖 )𝜌

]
=

[
Δ𝑖

2𝜌 ,
Δ𝑖

𝜌

]
contained in some

cluster. As 𝑑𝑋 (𝑢, 𝑣) ∈
[
Δ𝑖

2𝜌 ,
Δ𝑖

𝜌

]
, there is some index 𝑗 such that

𝐵𝑋 (𝑢, 𝜖Δ𝑖 ), 𝐵𝑋 (𝑣, 𝜖Δ𝑖 ) ⊆ 𝐶𝑖 ∈ P𝑖
𝑗
. That is, the balls of radius

𝜖Δ𝑖 around 𝑢, 𝑣 are contained in a cluster of P𝑖
𝑗
. We argue that

𝑢, 𝑣 ∈ 𝐶𝑖 ∈ ˜P𝑖
𝑗
. Let 𝐶𝑣,𝐶𝑢 ∈ ˜P𝑖−1

𝑗
be the clusters containing 𝑣,𝑢

respectively at (𝑖 − 1)-th level. Note that they both have diameter at

most (1 + 𝜖)Δ𝑖−1 = (1+𝜖 )𝜖
4𝜌 Δ𝑖 < 𝜖Δ𝑖 . Hence 𝐶𝑣 ⊆ 𝐵𝑋 (𝑣, 𝜖Δ𝑖 ) ⊆ 𝐶𝑖 ,

and similarly𝐶𝑢 ⊆ 𝐶𝑖 . By the partitioning algorithm, it follows that

𝐶𝑢 ,𝐶𝑣 ⊆ 𝐶𝑖 (as 𝐶𝑢 ,𝐶𝑣 do not intersect any other clusters), and in

particular 𝑢, 𝑣 ∈ 𝐶𝑖 as required.

Finally, we construct an ultrametric cover. Fix an index 𝑗 ∈ [1, 𝜏];
we construct a ( 4𝜌𝜖 )-HST 𝑈 𝑗 as follows. Leaves of 𝑈 𝑗 bijectively

correspond to points in𝑋 and have label 0. For each 𝑖 ∈ [0, 𝐼 ] where
𝐼 = ⌈log

4𝜌/𝜖 Φ/𝑐⌉, internal nodes at level 𝑖 bijectively correspond to

the clusters
˜P𝑖
𝑗
(leaves of 𝑈 𝑗 is at level −1), and have label (1 +

𝜖)Δ𝑖 . There is an edge from each node corresponding to a cluster

𝐶𝑖−1 ∈ ˜P𝑖−1
𝑗

to the node corresponding the unique cluster𝐶𝑖 ∈ ˜P𝑖
𝑗

containing 𝐶𝑖−1. The root of𝑈 𝑗 is the unique single cluster in
˜P𝐼
𝑗
.

Clearly, the ultrametric cover {𝑈 𝑗 }𝜏𝑗=1 is dominating, and every

ultrametric is a
4𝜌
𝜖 -HST.

To bound the stretch, we will construct such an ultrametric

cover with 𝑐 = (1 + 𝜖)𝑙 for every 𝑙 ∈ [0, ⌊log
1+𝜖

4𝜌
𝜖 ⌋]. The final

ultrametric cover will be a union of these𝑂 (log
1+𝜖

4𝜌
𝜖 ) ultrametric

covers. Clearly, their cardinality is bounded by 𝜏 ·𝑂 (log
1+𝜖

4𝜌
𝜖 ) =

𝑂 ( 𝜏𝜖 log
𝜌
𝜖 ).

Consider a pair 𝑥,𝑦 ∈ 𝑋 . Let 𝑙 ∈ [0, ⌊log
1+𝜖

4𝜌
𝜖 ⌋], and 𝑖 ≥ 0 be

the unique indices such that (1+𝜖)𝑙−1 ( 4𝜌𝜖 )𝑖 ≤ (1+𝜖)𝜌 ·𝑑𝑋 (𝑥,𝑦) ≤
(1 + 𝜖)𝑙 ( 4𝜌𝜖 )𝑖 . For 𝑐 = (1 + 𝜖)𝑙 , there is some index 𝑗 , and a cluster

𝐶𝑖 ∈ ˜P𝑖
𝑗
such that 𝑥,𝑦 ∈ 𝐶𝑖 ∈ ˜P𝑖

𝑗
. Thus in the corresponding

ultrametric, 𝑥,𝑦 both decedents of an internal node with label (1 +
𝜖)𝑙+1 ( 4𝜌𝜖 )𝑖 ≤ (1 + 𝜖)3𝜌 · 𝑑𝑋 (𝑥,𝑦), the stretch guarantee follows.

In summary, we have constructed an

(
𝑂 ( 𝜏𝜖 log

𝜌
𝜖 ), 𝜌 (1 + 7𝜖)

)
-

ultrametric cover, consisting of ( 4𝜌𝜖 )-HST’s. □

3.2 Pairwise Partition Cover for General
Metrics: Proof of Lemma 3.7

Fix parameter 𝛿 ∈ (0, 1]. We begin by creating a distribution over

partitions, such that for every pair of points 𝑢, 𝑣 at distance Δ
2𝑘+𝛿 ,

there is a non trivial probability that the some balls around 𝑢, 𝑣

contained in a single cluster. Later, Lemma 3.7 will follow by taking

the union of many independently sampled such partitions.

Lemma 3.8. For every 𝑛-point metric space (𝑋,𝑑𝑋 ), integer
𝑘 ≥ 1, 𝛿 ∈ [0, 1], and Δ > 0 there is a distribution
over Δ-bounded partitions such that for every pair of points 𝑢, 𝑣
where 𝑑𝑋 (𝑢, 𝑣) ≤ Δ

2𝑘+𝛿 , with probability at least 𝑛−
1

𝑘 , the balls
𝐵𝑋 (𝑢, 𝛿

4𝑘 (2𝑘+𝛿 ) Δ), 𝐵𝑋 (𝑣, 𝛿
4𝑘 (2𝑘+𝛿 ) Δ) contained in a single cluster.

For the case where 𝛿 = 0, is a distribution formerly constructed

by the first author [57].
8
Our proof here follows the steps of [57]

(which is based on the partition in [39]).

Proof of Lemma 3.8. Pick u.a.r. a radius 𝑟 ∈ { 1
𝑘
, 2
𝑘
, . . . , 𝑘

𝑘
}, and

a random permutation 𝜋 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} over the points. Then
set 𝐶𝑖 = 𝐵𝑋 (𝑣𝑖 , 𝑟 · Δ

2
) \ ∪𝑗<𝑖𝐵𝑋 (𝑣 𝑗 , 𝑟 · Δ

2
). As a result we obtain a

Δ bounded partition {𝐶𝑖 }𝑛𝑖=1.
For a pair 𝑢, 𝑣 where 𝑑𝑋 (𝑢, 𝑣) ≤ Δ

2𝑘+𝛿 , let 𝑇 = 𝐵𝑋 (𝑢, 𝛿
4𝑘 (2𝑘+𝛿 ) ·

Δ) ∪𝐵𝑋 (𝑣, 𝛿
4𝑘 (2𝑘+𝛿 ) ·Δ). Note that for every pair of points 𝑥,𝑦 ∈ 𝑇 ,

by triangle inequality it holds that

𝑑𝑋 (𝑥, 𝑦) ≤ 𝑑𝑋 (𝑢, 𝑣)+ 𝛿

2𝑘 (2𝑘 + 𝛿 ) ·Δ ≤
(

1

2𝑘 + 𝛿
+ 𝛿

2𝑘 (2𝑘 + 𝛿 )

)
·Δ =

Δ

2𝑘
.

Let𝐴𝑠 = {𝑣 𝑗 | 𝑑𝑋 (𝑣 𝑗 ,𝑇 ) ≤ 𝑠
𝑘
· Δ
2
}. Then𝐴0 = 𝑇 . Suppose that 𝑟 =

𝑠
𝑘
, and let 𝑣𝑖 be the vertex with minimal index such that 𝑑𝑋 (𝑇, 𝑣𝑖 ) ≤

𝑠
𝑘
· Δ
2
. Then no vertex in 𝑇 will join the clusters 𝐶1, . . . ,𝐶𝑖−1, and

some vertex in𝑇 will join𝐶𝑖 . Let 𝑧 ∈ 𝑇∩𝐶𝑖 , and suppose further that
𝑣𝑖 ∈ 𝐴𝑠−1. By the triangle inequality, for every 𝑦 ∈ 𝑇 , 𝑑𝑋 (𝑦, 𝑣𝑖 ) ≤
𝑑𝑋 (𝑦, 𝑧) + 𝑑𝑋 (𝑧, 𝑣𝑖 ) ≤ Δ

2𝑘
+ 𝑠−1

𝑘
· Δ
2
= 𝑠

𝑘
· Δ
2
. Hence all the points

in 𝑇 will join the cluster of 𝑣𝑖 . Denote by Ψ the event that all the

vertices in𝑇 are contained in a single cluster. Using the law of total

probability, we conclude

Pr[Ψ] = 1

𝑘
·

𝑘∑︁
𝑠=1

Pr[Ψ | 𝑟 = 𝑠

𝑘
] ≥ 1

𝑘
·

𝑘∑︁
𝑠=1

|𝐴𝑠−1 |
|𝐴𝑠 |

≥
(
Π𝑘
𝑠=1

|𝐴𝑠−1 |
|𝐴𝑠 |

) 1

𝑘

=

(
|𝐴0 |
|𝐴𝑘 |

) 1

𝑘

≥ 𝑛−
1

𝑘 ,

8
This is the full version, see also the conference version [56].
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C1
C2

C3C4

C̃1
C̃2

C̃3C̃4

Figure 2: Illustration of the construction of the partition ˜P𝑖
𝑗
given P𝑖

𝑗
and ˜P𝑖−1

𝑗
. The black lines in both the left and right parts

of the figure border clusters in ˜P𝑖−1
𝑗

. On the left illustrated the partition P𝑖
𝑗
= {𝐶1,𝐶2,𝐶3,𝐶4}, where different clusters colored

by different colors. On the right illustrated the modified partition P𝑖
𝑗
= {𝐶1,𝐶2,𝐶3,𝐶4}. 𝐶1 contains all the clusters in ˜P𝑖−1

𝑗

intersecting 𝐶1. 𝐶2 contains all the clusters in ˜P𝑖−1
𝑗

\𝐶1 intersecting 𝐶2, and so on.

where the second inequality follows by the inequality of arithmetic

and geometric means. □

We now ready to prove Lemma 3.7 (restated for convenience).

Lemma 3.7. Every 𝑛-point metric space (𝑋,𝑑𝑋 ) admits an
(𝑂 (𝑛

1

𝑘 log𝑛), 2𝑘 + 𝛿, 𝛿
4𝑘 (2𝑘+𝛿 ) )-pairwise partition cover scheme for

any 𝛿 ∈ [0, 1] and integer 𝑘 ≥ 1.

Proof. Fix Δ. Sample 𝑠 = 𝑛
1

𝑘 · 2 ln𝑛 i.i.d. partitions using

Lemma 3.8. Consider a pair of points𝑢, 𝑣 such that 𝑑𝑋 (𝑢, 𝑣) ≤ Δ
2𝑘+𝛿 .

Then in each sampled partition, the probability that the balls

𝐵𝑋 (𝑢, 𝛿
4𝑘 (2𝑘+𝛿 ) Δ), 𝐵𝑋 (𝑣, 𝛿

4𝑘 (2𝑘+𝛿 ) Δ) contained in a single cluster

is at least 𝑝 = 𝑛−
1

𝑘 . The probability that 𝑢, 𝑣 are not satisfied by any

partition, is at most (1 − 𝑝)𝑠 ≤ 𝑒−𝑝𝑠 = 𝑒−2 ln𝑛 = 𝑛−2. As there are
at most

(𝑛
2

)
≤ 𝑛2

2
pairs at distance at most

Δ
2𝑘+𝛿 , by union bound,

with probability at least
1

2
, every pair is satisfied by some partition.

It follows that the union of 𝑠 random partitions is, with a probabil-

ity at least
1

2
, an (𝑂 (𝑛

1

𝑘 log𝑛), 2𝑘 + 𝛿, 𝛿
4𝑘 (2𝑘+𝛿 ) )-pairwise partition

cover as required. □

3.3 Ultrametric Cover for Doubling Spaces
In this section, we will construct a pairwise partition cover for

doubling spaces, and then use them to construct ultrametric cov-

ers, and thus proving Theorem 3.4. We begin with the following

combinatorial lemma.

Lemma 3.9. Consider a graph 𝐺 = (𝑉 , 𝐸𝑏 ∪ 𝐸𝑟 ) with disjoint sets
of blue edges 𝐸𝑏 and red edges 𝐸𝑟 , such the maximal blue degree is
𝛿𝑏 ≥ 1, and the maximal red degree is 𝛿𝑟 ≥ 1. Then there is a set of at
most 𝛾 = 𝑂 (𝛿𝑟𝛿𝑏 ) matching M = {𝑀1, 𝑀2, . . . , 𝑀𝛾 } of 𝐺 such that
(a) 𝐸𝑏 ⊆ ∪𝛾

𝑖=1
𝑀𝑖 , and (b) for every matching𝑀 ∈ M, there is no red

edge whose both endpoints are matched by𝑀 .

Proof. We construct M greedily. Initially, M = ∅. Let 𝐸′
𝑏
be

the set of blue edges of𝐺 that are not added to any matching inM.

Let𝑀 ⊆ 𝐸′
𝑏
be a maximal matching such that there is no red edge

whose endpoints are both matched by𝑀 (such maximal matching

could be found greedily in linear time); we add𝑀 toM and repeat.

We argue by contradiction that the greedy algorithm adds at

most 4𝛿𝑟𝛿𝑏 matching to M. Consider a vertex 𝑣 such that after

𝛿𝑏 (2𝛿𝑟 + 2) maximal matchings added to M, there remains at least

one blue edge incident to 𝑣 that is not covered by any matching in

M. Since there is at most 𝛿𝑏 blue edges incident to 𝑣 , there must

be a set M𝑣 ⊆ M of at least 𝛿𝑏 (2𝛿𝑟 + 1) matchings where 𝑣 is not

matched by any of the matchings in M𝑣 . By the maximality, in

each matching𝑀 ∈ M𝑣 , either:

(a) A red neighbor of 𝑣 is matched by𝑀 .

(b) For every blue neighbor 𝑢 of 𝑣 , either 𝑢 is matched, or a red

neighbor of 𝑢 is matched by𝑀 , which prevents 𝑢 from being

matched.

Since 𝑣 has at most 𝛿𝑟 red neighbors, and each of them can be

matched at most 𝛿𝑏 times, case (a) happens at most 𝛿𝑏𝛿𝑟 times. The

blue neighbors of 𝑣 could be matched at most 𝛿𝑏 − 1 times, while

their red neighbors could be matched at most 𝛿𝑟𝛿𝑏 times. Thus,

case (b) happens at most 𝛿𝑏 − 1 + 𝛿𝑟𝛿𝑏 < 𝛿𝑏 (𝛿𝑟 + 1) − 1 times. We

conclude that |M𝑣 | ≤ 𝛿𝑟𝛿𝑏 + 𝛿𝑏 (𝛿𝑟 + 1) − 1 = 𝛿𝑏 (2𝛿𝑟 + 1) − 1, a

contradiction. □

Lemma 3.10. Every metric space (𝑋,𝑑𝑋 ) with doubling dimension
𝑑 admits an (𝜖−𝑂 (𝑑 ) , (1 + 𝜖), 𝜖)-pairwise partition cover scheme for
any 𝜖 ∈ (0, 1/16).

Proof. Let Δ > 0 be any given real number. We show that

(𝑋,𝑑𝑋 ) admits an (𝜖−𝑂 (𝑑 ) , (1+8𝜖), 𝜖
2
, (1+8𝜖)Δ)-pairwise partition

cover P, the lemma then follows by rescaling 𝜖 and Δ.
Let 𝑁 be an (𝜖Δ)-net of (𝑋,𝑑𝑋 ). We construct a graph 𝐺

with 𝑁 as the vertex set; there is a blue edge (𝑢, 𝑣) ∈ 𝐸𝑏 in

𝐺 iff 𝑑𝑋 (𝑢, 𝑣) ∈
[
(1 − 4𝜖) Δ

2
, (1 + 2𝜖)Δ

]
, and there is a red edge

(𝑢, 𝑣) ∈ 𝐸𝑟 iff 𝑑𝑋 (𝑢, 𝑣) ≤ 4𝜖Δ. As 𝜖 < 1

12
, the set of blue and

red edges are disjoint. By the packing property of doubling met-

rics (Lemma 2.1), every vertex in 𝐺 has blue degree 𝜖−𝑂 (𝑑 )
and
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Figure 3: Illustration of the partition P𝑀 . The black points
represent metric points, while the red points represent the
net points 𝑁 . The blue edges are the matching 𝑀 . For each
edge {𝑢, 𝑣} ∈ 𝑀 , the cluster 𝐵𝑋 (𝑢, 2𝜖Δ) ∪𝐵𝑋 (𝑣, 2𝜖Δ) is added to
P𝑀 . These clusters are illustrated with colored filled boxes.
The remaining points are clustered around unclustered net
points. These clusters are encircled by green lines. Distances
shown in the figure are not properly scaled for a better visu-
alization.

red degree 2
𝑂 (𝑑 )

. LetM be the set of matching of 𝐺 (𝑁, 𝐸𝑏 ∪ 𝐸𝑟 )
guaranteed by Lemma 3.9; |M| = 𝑂 (𝜖−𝑂 (𝑑 )

2
𝑂 (𝑑 ) ) = 𝜖−𝑂 (𝑑 )

.

For each matching 𝑀 ∈ M, we construct a partition P𝑀 as

follows: for every edge {𝑢, 𝑣} ∈ 𝑀 , we add 𝐵𝑋 (𝑢, 2𝜖Δ) ∪𝐵𝑋 (𝑣, 2𝜖Δ)
as a cluster to P𝑀 . Denote by 𝑁𝑀 the set of net points that remain

unclustered. For every net point 𝑥 ∈ 𝑁𝑀 , we initiate a new cluster

𝐶𝑥 containing 𝑥 only. Then, every remaining unclustered point

𝑧 ∈ 𝑋 joins the cluster of its closest net point 𝑥𝑧 (from either 𝑁𝑀

or 𝑁 \ 𝑁𝑀 ). See Figure 3 for an illustration.

We observe that for any two edges (𝑢, 𝑣) and (𝑢′, 𝑣 ′) in matching

𝑀 , 𝐵𝑋 (𝑢, 2𝜖Δ) ∩ 𝐵𝑋 (𝑢′, 2𝜖Δ) = ∅ since otherwise, there is a red

edge between 𝑢 and 𝑢′, contradicting item (b) in Lemma 3.9. Thus,

P𝑀 is indeed a partition of 𝑋 . We next bound the diameter of each

cluster in P𝑀 . Clearly every cluster𝐶𝑥 for 𝑥 ∈ 𝑁𝑀 has diameter at

most 2𝜖Δ. On the other hand, by the construction and the triangle

inequality, the diameter of every cluster resulting from thematching

is bounded by 2 · (𝜖Δ + 2𝜖Δ) + (1 + 2𝜖)Δ = (1 + 8𝜖)Δ. Thus P𝑀 is

((1 + 8𝜖)Δ)-bounded.
Let P = {P𝑀 }𝑀∈M . It remains to show that for every 𝑥,𝑦 ∈ 𝑋

such that 𝑑𝑋 (𝑥,𝑦) ∈
[
(1+8𝜖 )Δ
(1+8𝜖 )2 ,

(1+8𝜖 )Δ
(1+8𝜖 )

]
=
[ Δ
2
,Δ

]
, there is a cluster

𝐶 in a partition P ∈ P containing both 𝐵𝑋 (𝑥, 𝜖
2
· (1 + 8𝜖)Δ) and

𝐵𝑋 (𝑦, 𝜖
2
· (1 + 8𝜖)Δ). Note that as 𝜖 ≤ 1

16
,
𝜖
2
· (1 + 8𝜖)Δ ≤ 𝜖Δ. Let

𝑥 ′, 𝑦′ ∈ 𝑁 be net points such that 𝑑𝑋 (𝑥, 𝑥 ′), 𝑑𝑋 (𝑦,𝑦′) ≤ 𝜖Δ. Then
by the triangle inequality |𝑑𝑋 (𝑥 ′, 𝑦′) − 𝑑𝑋 (𝑥,𝑦) | ≤ 2𝜖Δ, implying

that 𝑑𝑋 (𝑥 ′, 𝑦′) ∈
[
(1 − 4𝜖) Δ

2
, (1 + 2𝜖)Δ

]
. Hence, 𝐺 contains a blue

edge between 𝑥 ′, 𝑦′. It follows that there is a matching𝑀 containing

the edge {𝑥 ′, 𝑦′}, and a partitions P𝑀 containing the cluster 𝐶 =

𝐵𝑋 (𝑥 ′, 2𝜖Δ)∪𝐵𝑋 (𝑦′, 2𝜖Δ). In particular,𝐵𝑋 (𝑥, 𝜖Δ)∪𝐵𝑋 (𝑦, 𝜖Δ) ⊆ 𝐶

as required. □

We are finally ready to prove Theorem 3.4 that we restate below

for convenience.

Theorem 3.4 (Ultrametric Cover For Doubling Metrics).

Every metric space (𝑋,𝑑𝑋 ) with doubling dimension 𝑑 admits an
(𝜖−𝑂 (𝑑 ) , 1 + 𝜖, 1𝜖 , 𝜖

−𝑂 (𝑑 ) )-ultrametric cover for any parameter 𝜖 ∈
(0, 1

6
).

Conversely, if a metric space (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌, 𝑘, 𝛿)-
ultrametric cover for 𝑘 ≥ 2𝜌 , then it has doubling dimension
𝑑 ≤ log(𝜏𝛿).

Proof. We begin with the first assertion (doubling metrics admit

ultrametric covers). After appropriate rescaling, by Lemma 3.6 and

Lemma 3.10, we obtain an

(
𝜖−𝑂 (𝑑 ) , 1 + 𝜖

)
-ultrametric cover where

every ultrametric in the cover is a
1

𝜖 -HST. It remains to show that

every ultrametric in the cover returned by Lemma 3.6 w.r.t. the

pairwise partition cover scheme constructed in Lemma 3.10 has

bounded degree.

We will use the terminology of Lemmas 3.6 and 3.10. Consider

some ultrametricU𝑗 and some cluster𝐶 at level 𝑖 with label (1+𝜖)Δ𝑖 .
The clusters at level 𝑖 − 1 correspond to points in (𝜖Δ𝑖−1)-net. The
cluster 𝐶 has diameter (1 + 𝜖)Δ𝑖 , and hence it has at most 𝜖−𝑂 (𝑑 )

(𝜖Δ𝑖−1)-net points. In particular 𝐶 can contain at most 𝜖−𝑂 (𝑑 )

level-(𝑖 − 1) clusters. The bound on the degree follows.

Next, we prove the second assertion. Consider a metric space

(𝑋,𝑑𝑋 ) admitting a (𝜏, 𝜌, 𝑘, 𝛿)-ultrametric cover with 𝑘 ≥ 2𝜌 . Let

𝐵𝑋 (𝑥, 𝑟 ) be some ball of radius 𝑟 . In each ultrametric 𝑈𝑖 in the

cover, let 𝐿𝑖 be the node closest to root that is an ancestor of 𝑥 and

has label at most 𝜌 · 𝑟 . Let {𝐿𝑖,1, 𝐿𝑖,2, . . . } be the set of at most 𝛿

children of 𝐿𝑖 in𝑈𝑖 . For each 𝐿𝑖, 𝑗 , we pick an arbitrary leaf 𝑢𝑖, 𝑗 ∈ 𝑋

descendent of 𝐿𝑖, 𝑗 . We argue that

𝐵𝑋 (𝑥, 𝑟 ) ⊆ ∪𝑖, 𝑗𝐵𝑋 (𝑢𝑖, 𝑗 ,
𝑟

2

) ,

as the number of balls in the union is at most 𝜏𝛿 , the theorem will

follow. Consider a vertex 𝑦 ∈ 𝐵𝑋 (𝑥, 𝑟 ). There is necessarily an

ultrametric 𝑈𝑖 such that 𝑑𝑈𝑖
(𝑥,𝑦) ≤ 𝜌 · 𝑟 . In particular, in 𝑈𝑖 , 𝑥,𝑦

are both decedents of a node with label at most 𝜌 · 𝑟 . Recall that
𝐿𝑖 is such a node with maximal label. Let 𝐿𝑖, 𝑗 be the child of 𝐿𝑖
such that 𝑦 is decedent of 𝐿𝑖, 𝑗 . As𝑈𝑖 is a 𝑘-HST, the label of 𝐿𝑖, 𝑗 is

bounded by
𝜌𝑟

𝑘
≤ 𝑟

2
since 𝑘 ≥ 2𝜌 . In particular, 𝑦 ∈ 𝐵𝑋 (𝑢𝑖, 𝑗 , 𝑟

2
) as

required. □

4 LOCALITY SENSITIVE ORDERING
Locality-Sensitive Ordering. Chan et al. [42] introduced and stud-

ied the notion of locality-sensitive ordering (Definition 1.1). In the

same paper, Chan et al. [42] showed that the Euclidean metric of

dimension 𝑑 has an

(
𝑂 (𝜖)−𝑑 log 1

𝜖 ), 𝜖
)
-LSO. They also presented

various applications of the LSO to solve fundamental geometry

problems in Euclidean spaces. The proof relies on the following

lemma by Walecki [6].

Lemma 4.1. Given a set of 𝑛 elements [𝑛] = {1, . . . , 𝑛}, there exists
a set Σ of ⌈𝑛

2
⌉ orderings such that for any two elements 𝑖 ≠ 𝑗 ∈ [𝑛],

there exists an ordering 𝜎 in which 𝑖 and 𝑗 are adjacent.

1075



Locality-Sensitive Orderings and Applications to Reliable Spanners STOC ’22, June 20–24, 2022, Rome, Italy

We show that metrics admitting an ultrametric cover of bounded

degree have an LSO with a small number of orders. Our proof relies

on the following lemma.

Lemma 4.2. Every 𝛼-HST (𝑈 ,𝑑𝑈 ) of degree 𝛿 admits a (
⌈
𝛿
2

⌉
, 1𝛼 )-

LSO.

Proof. For simplicity, we will assume that the number of chil-

dren in each node is exactly 𝛿 . This could be achieved by adding

dummy nodes. By Lemma 4.1, every set of 𝛿 vertices can be ordered

into

⌈
𝛿
2

⌉
orderings such that every two vertices are adjacent in

at least one of them. Denote these orderings by 𝜎1, . . . , 𝜎⌈ 𝛿
2

⌉
. We

construct the set of orderings for (𝑈 ,𝑑𝑈 ) inductively.
Let 𝐴 be the root of the HST with children 𝐴1, . . . , 𝐴𝛿 . By the

induction hypothesis, each 𝐴𝑖 admits a set 𝜎𝑖
1
, . . . , 𝜎𝑖⌈

𝛿
2

⌉ orderings.
We construct ⌈𝛿/2⌉ orderings as follows: for each 𝑗 ∈ [⌈𝛿/2⌉], order
the vertices inside each 𝐴𝑖 w.r.t. 𝜎

𝑖
𝑗
, and order the sets in between

them w.r.t. 𝜎 𝑗 . The resulting ordering is denoted by �̃� 𝑗 . This finishes

the construction.

Next, we argue that this is a (
⌈
𝛿
2

⌉
, 1𝛼 )-LSO. Clearly, we used

exactly

⌈
𝛿
2

⌉
orderings. Let Δ be the label of the root. Consider a

pair of leaves 𝑥,𝑦. If 𝑑𝑈 (𝑥,𝑦) < Δ, then there is some 𝑖 such that

𝑥,𝑦 ∈ 𝐴𝑖 . By the induction hypothesis, there is some order 𝜎𝑖
𝑗
of 𝐴𝑖

such that (w.l.o.g.) 𝑥 ≺𝜎𝑖
𝑗
𝑦, and the points between 𝑥 and 𝑦 w.r.t. 𝜎𝑖

𝑗

could be partitioned into two consecutive intervals 𝐼𝑥 , 𝐼𝑦 such that

𝐼𝑥 ⊆ 𝐵𝑈 (𝑥, 𝑑𝑈 (𝑥,𝑦)/𝛼) and 𝐼𝑦 ⊆ 𝐵𝑈 (𝑦,𝑑𝑈 (𝑥,𝑦)/𝛼). The base case
is trivial since every leaf has label 0. Note that 𝜎𝑖

𝑗
is a sub-ordering

of �̃� 𝑗 . In particular, the lemma holds.

The next case is when 𝑑𝑈 (𝑥,𝑦) = Δ. Then there are 𝑖 ≠ 𝑖′ such
that 𝑥 ∈ 𝐴𝑖 and 𝑦 ∈ 𝐴𝑖′ . There is some ordering 𝜎 𝑗 such that 𝐴𝑖

and 𝐴𝑖′ are consecutive. In particular all the vertices between 𝑥 to

𝑦 in �̃� 𝑗 can be partitioned to two sets, the first belonging to 𝐴𝑖 , and

the second to 𝐴𝑖′ . The lemma follows as all the vertices in 𝐴𝑖 (𝐴𝑖′ )

are at distance at most
Δ
𝛼 =

𝑑𝑈 (𝑥,𝑦)
𝛼 from 𝑥 (𝑦). □

Lemma 4.3. If a metric (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌, 𝑘, 𝛿)-ultrametric

cover, then it has a
(
𝜏 · ⌈𝛿

2
⌉, 𝜌

𝑘

)
-LSO.

Proof. LetU be an ultrametric cover for (𝑋,𝑑𝑋 ). For each ul-

trametric (𝑈 ,𝑑𝑈 ), let Σ𝑈 be the set of orderings obtained by ap-

plying Lemma 4.2. Let Σ = ∪𝑈 ∈UΣ𝑈 . We show that Σ is the LSO

claimed by the lemma. Clearly, it contains at most 𝜏 · ⌈𝛿
2
⌉ orderings.

Consider two points 𝑥 ≠ 𝑦 ∈ 𝑋 . Let 𝑈 be an ultrametric in

U such that 𝑑𝑈 (𝑥,𝑦) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦). By Lemma 4.2, there is an

ordering 𝜌 ∈ Σ𝑈 such that (w.l.o.g) 𝑥 ≺𝜎 𝑦 and points between 𝑥

and 𝑦 w.r.t 𝜎 can be partitioned into two consecutive intervals 𝐼𝑥

and 𝐼𝑦 where 𝐼𝑥 ⊆ 𝐵𝑈 (𝑥, 𝑑𝑈 (𝑥,𝑦)
𝑘

) and 𝐼𝑦 ⊆ 𝐵𝑈 (𝑦, 𝑑𝑈 (𝑥,𝑦)
𝑘

). Since
𝑑𝑈 (𝑥,𝑦) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦), we conclude that 𝐼𝑥 ⊆ 𝐵𝑋 (𝑥, 𝜌

𝑘
· 𝑑𝑋 (𝑥,𝑦))

and 𝐼𝑦 ⊆ 𝐵𝑋 (𝑦, 𝜌
𝑘
· 𝑑𝑋 (𝑥,𝑦)) as desired. □

Using Theorem 3.4 and Lemma 4.3 with 𝜌 = (1+𝜖) and 𝑘 = 𝑂 ( 1𝜖 ),
we conclude

Corollary 4.4 (LSO For Doubling Metrics). For every 𝜖 suffi-
ciently smaller than 1, every metric space (𝑋,𝑑𝑋 ) of doubling dimen-

sion 𝑑 admits an
(
𝜖−𝑂 (𝑑 ) , 𝜖

)
-LSO.

Reliable (1 + 𝜖)-Spanners from LSO. . Buchin et al. [36, 37] con-
structed reliable (1 + 𝜖) spanners for Euclidean metrics using

(𝜏 (𝜖), 𝜖)-LSO by Chan et al. [42]. Specifically, their spanner for the
deterministic case has 𝑛 · 𝑂 (𝜖)−7𝑑 log7 ( 1𝜖 ) · 𝜈

−6
log𝑛(log log𝑛)6

edges, while for the oblivious case, they constructed a span-

ner with an almost linear number of edges: 𝑛 · 𝑂 (𝜖)−2𝑑 log3 1

𝜖 ·
𝜈−1 log𝜈−1 (log log𝑛)2 log log log𝑛. Their key idea is to reduce the

problem to the construction of reliable (1 + 𝜖)-spanners for the
(unweighted) path graph 𝑃𝑛 with 𝑛 vertices. We observe that their

construction of the reliable (1+𝜖)spanners did not use any property
of the metric space other than the existence of an LSO.

Theorem 4.5 ([36, 37], implicit). Suppose that for any 𝜖 ∈ (0, 1),
an 𝑛-point metric space (𝑋,𝑑𝑋 ) admits a (𝜏 (𝜖), 𝜖)-LSO for some
function 𝜏 : (0, 1) → N. Then for every 𝜈 ∈ (0, 1) and 𝜖 ∈ (0, 1):

(1) (𝑋,𝑑𝑋 ) admits a deterministic 𝜈-reliable (1 + 𝜖)-spanner with

𝑛·𝑂
((
𝜏 ( 𝜖

𝑐𝑑
)
)
7

𝜈−6 log𝑛(log log𝑛)6
)
edges for some universal

constant 𝑐𝑑 .
(2) (𝑋,𝑑𝑋 ) admits an oblivious 𝜈-reliable (1 + 𝜖)-spanner with

𝑛 · 𝑂
((
𝜏 ( 𝜖𝑐0 )

)
2𝜈−1 (log log𝑛)2 · log

(
𝜏 ( 𝜖

𝑐
0

) log log𝑛
𝜈

))
edges

for some universal constant 𝑐0.

By Theorem 4.5 and Corollary 4.4, we have:

Corollary 4.6. Consider a metric space (𝑋,𝑑𝑋 ) with dou-
bling dimension 𝑑 . Then for every 𝜈 ∈ (0, 1) and 𝜖 ∈ (0, 1),
(𝑋,𝑑𝑋 ) admits a deterministic 𝜈-reliable (1 + 𝜖)-spanner with 𝑛 ·
𝜖−𝑂 (𝑑 )𝜈−6 log𝑛(log log𝑛)6 edges, and an oblivious 𝜈-reliable (1+𝜖)-
spanner with

𝑛 · 𝜖−𝑂 (𝑑 ) · 𝜈−1 (log log𝑛)2 · log

(
log log𝑛

𝜖𝜈

)
= 𝑛 · 𝜖−𝑂 (𝑑 ) ·

�̃�
(
𝜈−1 (log log𝑛)2

)
edges.

5 TRIANGLE LOCALITY SENSITIVE
ORDERING

A triangle locality-sensitive ordering (triangle-LSO) is defined as

follows.

Definition 5.1 ((𝜏, 𝜌)-Triangle-LSO). Given a metric space

(𝑋,𝑑𝑋 ), we say that a collection Σ of orderings is a (𝜏, 𝜌)-triangle-
LSO if |Σ| ≤ 𝜏 , and for every 𝑥,𝑦 ∈ 𝑋 , there is an ordering 𝜎 ∈ Σ
such that (w.l.o.g.) 𝑥 ≺𝜎 𝑦, and for every 𝑎, 𝑏 ∈ 𝑋 such that

𝑥 ⪯𝜎 𝑎 ⪯𝜎 𝑏 ⪯𝜎 𝑦 it holds that 𝑑𝑋 (𝑎, 𝑏) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦).

Note that every (𝜏, 𝜌)-triangle LSO is also a (𝜏, 𝜌)-LSO; however,
a (𝜏, 𝜌)-LSO is a (𝜏, 2𝜌 + 1)-triangle LSO (by triangle inequality).

Hence for stretch parameter 𝜌 > 1, triangle-LSO is preferable to

the classic LSO. Similar to Lemma 4.3, we show that a metric space

admitting an ultrametric cover has a triangle-LSO with a small

number of orderings. The proof of the following lemma is differed

to the full version [62].

Lemma 5.2. If a metric (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌)-ultrametric cover
U, then it has a (𝜏, 𝜌)-triangle-LSO.
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Using Theorem 3.3 and Lemma 5.2, we conclude.

Corollary 5.3. For every 𝑘 ∈ N, and 𝜖 ∈ (0, 1), every 𝑛-point

metric space admits an
(
𝑂 (𝑛

1

𝑘 · log𝑛 · 𝑘2

𝜖 · log 𝑘
𝜖 ), 2𝑘 + 𝜖

)
-triangle-

LSO.

Reliable Spanners from triangle-LSO. . We show that if a metric

space admits a (𝜏, 𝜌)-triangle-LSO, it has an oblivious 2𝜌-spanners

with about 𝑛 · 𝜏2 edges. We use this result to construct reliable

(8𝑘 − 2) (1 + 𝜖)-spanners for general metrics (and reliable (2𝜌)-
spanners for ultrametrics).

Theorem 5.4. Suppose that a metric space (𝑋,𝑑𝑋 ) admits a (𝜏, 𝜌)-
Triangle-LSO. Then for every 𝜈 ∈ (0, 1), 𝑋 admits an oblivious

𝜈-reliable, (2𝜌)-spanner with 𝑛𝜏 ·𝑂
(
log

2 𝑛 + 𝜈−1𝜏 log𝑛 · log log𝑛
)

edges.

The proof of Theorem 5.4 is deferred to the end of the section.

Using Corollary 5.3 with parameters 2𝑘 and
𝜖
2
, and Theorem 5.4

we conclude:

Theorem 5.5 (Oblivious Reliable Spanner for General Met-

ric). For every 𝑛-point metric space (𝑋,𝑑) and parameters 𝜈 ∈ (0, 1),
𝜖 ∈ (0, 1

2
), 𝑘 ∈ N, (𝑋,𝑑) admits an oblivious 𝜈-reliable, 8𝑘 + 𝜖-

spanner for 𝑋 with 𝑛1+
1

𝑘 · 𝜈−1 · log3 𝑛 · log log𝑛 · 𝑘4

𝜖2
𝑂 (log 𝑘

𝜖 )
2 =

𝑛1+
1

𝑘 · 𝜈−1 · �̃�
(
log

3 𝑛 · 𝑘4

𝜖2

)
edges.

By Lemma 5.2 and Theorem 5.4, we obtain:

Corollary 5.6. For every parameter 𝜈 ∈ (0, 1), every 𝑛-point
ultrametric space (𝑋,𝑑) admits an oblivious 𝜈-reliable, 2-spanner

with 𝑛 ·𝑂
(
log

2 𝑛 + 𝜈−1 log𝑛 · log log𝑛
)
edges.

The stretch parameter in Corollary 5.6 is tight (see the full version

[62]).

For the rest of this section, we show how to construct reliable

spanners for metric spaces admitting a triangle LSO. Following the

approach of Buchin et al. [36, 37], we reduce the problem to the

construction of reliable spanners for the (unweighted) path graph

𝑃𝑛 . However, in our setting, we face a very different challenge:

when 𝜌 > 1, the stretch of the reliable spanner for (𝑋,𝑑𝑋 ) grows
linearly w.r.t. the number of hops of the reliable spanner for the
path graph. In the Euclidean setting studied by Buchin et al. [37],
the stretch parameter is 𝜌 = 𝜖 < 1, and as a result, the stretch is

not significantly affected by the number of hops of the spanner for

the path graph.

Buchin et al. [37] constructed an oblivious 𝜈-reliable 1-spanner

for the path graph 𝑃𝑛 with𝑂 (𝑛 ·𝜈−1 log𝜈−1) edges. However, their
spanner has hop diameter 2 log𝑛; if we use their reliable spanner for

the path graph, we will end up in a spanner for (𝑋,𝑑𝑋 ) with stretch

2𝜌 log𝑛. To have a stretch 2𝜌 , we construct a reliable spanner for

the path graph 𝑃𝑛 with hop diameter 2. As a consequence, the

sparsity of our spanner has some additional logarithmic factors.

Note that a 2-hop spanner for the path graph 𝑃𝑛 even without any

reliability guarantee must contain Ω(𝑛 log𝑛) edges (see Excercise
12.10 [81]). Our result is summarized in the following lemma whose

proof is deferred to the full version [62].

Lemma 5.7 (2-hop-spanner). For every 𝜈 ∈ (0, 1), the path
graph 𝑃𝑛 admits an oblivious 𝜈-reliable, 2-hop 1-spanner 𝐻 with

𝑛 ·𝑂
(
log

2 𝑛 + 𝜈−1 log𝑛 · log log𝑛
)
edges.

Using Lemma 5.7, we can construct a reliable spanner for metric

spaces admitting a (𝜏, 𝜌)-triangle LSO as claimed by Theorem 5.4.

Proof of Theorem 5.4. Let Σ be a (𝜏, 𝜌)-triangle LSO as as-

sumed by the theorem. Let 𝜈 ′ = 𝜈
𝜏 . For every ordering 𝜎 ∈ Σ, we

form an unweighted path graph 𝑃𝜎 with vertex set 𝑋 and the order

of vertices along the path is 𝜎 . We construct a 𝜈 ′-reliable 2-hop span-

ner𝐻𝜎 (𝑋, 𝐸𝜎 ,𝑤𝜎 )) for 𝑃𝜎𝑛 with𝑛 ·𝑂
(
log

2 𝑛 + 𝜈 ′−1 log𝑛 · log log𝑛
)

edges by Lemma 5.7. Note that for every edge {𝑢, 𝑣} ∈ 𝐸𝜎 of 𝐻𝜎 ,

𝑤𝜎 (𝑢, 𝑣) is the distance between 𝑢 and 𝑣 in the (unweighted) path

graph 𝑃𝜎𝑛 .

We form a newweight function𝑤𝑋 that assign each edge {𝑢, 𝑣} ∈
𝐸𝜎 a weight𝑤𝑋 (𝑢, 𝑣) = 𝑑𝑋 (𝑢, 𝑣). The reliable spanner for (𝑋,𝑑𝑋 )
is 𝐻 =

⋃
𝜎∈Σ 𝐻𝜎 (𝑋, 𝐸𝜎 ,𝑤𝑋 ). We observe that the total number of

edges in 𝐻 is bounded by∑︁
𝜎∈Σ

𝑛 ·𝑂
(
log

2 𝑛 + 𝜈 ′−1 log𝑛 · log log𝑛
)

= 𝑛𝜏 ·𝑂
(
log

2 𝑛 + 𝜈−1𝜏 log𝑛 · log log𝑛
)
.

Let 𝐵 ⊆ 𝑋 be an oblivious attack. Let 𝐵+𝜎 be the faulty extension

of 𝐵 in 𝐻𝜎 , and 𝐵
+ = ∪𝜎∈Σ𝐵+𝜎 be the faulty extension of 𝐵 in 𝐻 . We

observe that:

E
[��𝐵+��] ≤ |𝐵 | +

∑︁
𝜎

E
[��𝐵+𝜎 \ 𝐵

��] ≤ |𝐵 | + 𝜏𝜈 ′ · |𝐵 | ≤ (1 + 𝜈) · |𝐵 | .

It remains to show the stretch guarantee of 𝐻 . For every pair

of points 𝑥,𝑦 ∉ 𝐵+, let 𝜎 ∈ Σ be the ordering that satisfies the

ordering property for 𝑥 and 𝑦: for every 𝑎, 𝑏 ∈ 𝑋 such that 𝑥 ⪯𝜎
𝑎 ⪯𝜎 𝑏 ⪯𝜎 𝑦, 𝑑𝑋 (𝑎, 𝑏) ≤ 𝜌 · 𝑑𝑋 (𝑥,𝑦). (Here we assume w.l.o.g. that

𝑥 ⪯𝜎 𝑦.) Since 𝑥,𝑦 ∉ 𝐵+, 𝑥,𝑦 ∉ 𝐵+𝜎 . Since 𝐻𝜎 (𝑋, 𝐸𝜎 ,𝑤𝜎 )) is a 2-hop
1-spanner for 𝑃𝜎 , there must be 𝑧 ∉ 𝐵 such that 𝑥 ⪯𝜎 𝑧 ⪯𝜎 𝑦 and

{𝑥, 𝑧}, {𝑧,𝑦} ∈ 𝐸𝜎 . We conclude that

𝑑𝐻 (𝑥,𝑦) ≤ 𝑤𝑋 (𝑥, 𝑧)+𝑤𝑋 (𝑧,𝑦) = 𝑑𝑋 (𝑥, 𝑧)+𝑑𝑋 (𝑧,𝑦) ≤ 2𝜌 ·𝑑𝑋 (𝑥,𝑦) ;

the theorem follows. □

6 CONCLUSIONS
In this paper, we have presented different types of locality-sensitive

orderings and used them to construct reliable spanners. For the

construction of the LSO’s, we introduced and constructed ultramet-

ric covers. Finally, in order to use the LSO’s to construct reliable

spanners, we construct 2-hop spanners and left spanners for the

path graph. Several open questions naturally arise from our work:

(1) Can we construct a 𝜈-reliable 2-hop 1-spanner for the path

graph 𝑃𝑛 with 𝑂 (𝑛 log𝑛) edges for constant 𝜈? Note that a
2-hop spanner for the path graph 𝑃𝑛 even without any relia-

bility guarantee must contain Ω(𝑛 log𝑛) edges (see Excercise
12.10 [81]).

(2) A major open question is the construction of deterministic

reliable spanners general metric spaces. [69] constructed de-

terministic reliable 𝑂 (𝑡2)-spanners for general metrics with

�̃� (𝑛1+
1

𝑡 ) edges, and deterministic reliable 𝑂 (𝑡)-spanners for
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trees and planar graphs with �̃� (𝑛1+
1

𝑡 ) edges, while showing
an Ω(𝑛1+

1

𝑡 ) lower bound on the number of edges in a deter-

ministic reliable 𝑡-spanners for the uniform metric. Using

the new LSO’s constructed in this paper, it could be possible

to improve the stretch parameters by a constant factor and

remove the dependency on aspect ratio from the sparsity.

However, the lower bound for uniform metrics applies to

trees and planar graphs as well; thus using �̃� (𝑛1+
1

𝑡 ) edges
to obtain stretch 𝑡 is necessary. On the other hand, general

metrics are far from understood. Closing the gap between

the current 𝑂 (𝑡2) upper bound to the 𝑡 lower bound is a

fascinating open question.

(3) Can we construct a reliable spanner of stretch 2 (as opposed

to stretch 2 + 𝜖 presented in this paper) for planar metrics

with a nearly linear number of edges?

REFERENCES
[1] Mohammad Ali Abam, Mark de Berg, Mohammad Farshi, and Joachim Gud-

mundsson. 2009. Region-Fault Tolerant Geometric Spanners. Discret. Comput.
Geom. 41, 4 (2009), 556–582. https://doi.org/10.1007/s00454-009-9137-7

[2] Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman.

2020. Ramsey Spanning Trees and Their Applications. ACM Trans. Algorithms
16, 2 (2020), 19:1–19:21. https://doi.org/10.1145/3371039

[3] Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar.

2019. Cops, Robbers, and Threatening Skeletons: Padded Decomposition for

Minor-Free Graphs. SIAM J. Comput. 48, 3 (2019), 1120–1145. https://doi.org/10.

1137/17M1112406

[4] Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mo-

hammad Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. 2020.

Graph spanners: A tutorial review. Comput. Sci. Rev. 37 (2020), 100253. https:

//doi.org/10.1016/j.cosrev.2020.100253

[5] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches:

sparsification, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scotts-
dale, AZ, USA, May 20-24, 2012. 5–14. https://doi.org/10.1145/2213556.2213560

[6] B. Alspach. 2008. The wonderful Walecki construction. Bull. Inst. Combin. Appl
52 (2008), 7–20. see here.

[7] Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian

Wulff-Nilsen. 2019. Constructing Light Spanners Deterministically in Near-Linear

Time. In 27th Annual European Symposium on Algorithms, ESA 2019, September
9-11, 2019, Munich/Garching, Germany. 4:1–4:15. https://doi.org/10.4230/LIPIcs.

ESA.2019.4

[8] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. 1993. On Sparse Spanners

of Weighted Graphs. Discrete Computational Geometry 9, 1 (1993), 81–100. https:

//doi.org/10.1007/BF02189308

[9] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. 1995. Euclidean Span-

ners: Short, Thin, and Lanky. In Proceedings of the Twenty-seventh Annual ACM
Symposium on Theory of Computing (STOC ’95). 489–498.

[10] S. Arya, D. M. Mount, and M. H. M. Smid. 1994. Randomized and deterministic

algorithms for geometric spanners of small diameter. In Proc. of 35th FOCS. 703–
712.

[11] Baruch Awerbuch and David Peleg. 1990. Sparse partitions. In Proceedings of
the 31st IEEE Symposium on Foundations of Computer Science (FOCS). 503–513.
https://doi.org/10.1109/FSCS.1990.89571

[12] Yair Bartal. 1996. Probabilistic Approximations of Metric Spaces and Its Al-

gorithmic Applications. In 37th Annual Symposium on Foundations of Com-
puter Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996. 184–193.
https://doi.org/10.1109/SFCS.1996.548477

[13] Yair Bartal. 2021. Advances in Metric Ramsey Theory and its Applications. CoRR
abs/2104.03484 (2021). arXiv:2104.03484 https://arxiv.org/abs/2104.03484

[14] Yair Bartal, Béla Bollobás, and Manor Mendel. 2006. Ramsey-type theorems for

metric spaces with applications to online problems. J. Comput. Syst. Sci. 72, 5
(2006), 890–921. https://doi.org/10.1016/j.jcss.2005.05.008 Special Issue on FOCS

2001.

[15] Yair Bartal, Nova Fandina, and Ofer Neiman. 2019. Covering Metric Spaces

by Few Trees. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. 20:1–20:16. https:

//doi.org/10.4230/LIPIcs.ICALP.2019.20

[16] Yair Bartal, Arnold Filtser, and Ofer Neiman. 2019. On notions of distortion and

an almost minimum spanning tree with constant average distortion. J. Comput.
Syst. Sci. 105 (2019), 116–129. https://doi.org/10.1016/j.jcss.2019.04.006

[17] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. 2005. Some Low

Distortion Metric Ramsey Problems. Discret. Comput. Geom. 33, 1 (2005), 27–41.
https://doi.org/10.1007/s00454-004-1100-z

[18] Surender Baswana. 2008. Streaming algorithm for graph spanners - single pass

and constant processing time per edge. Inf. Process. Lett. 106, 3 (2008), 110–114.
https://doi.org/10.1016/j.ipl.2007.11.001

[19] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. 2012. Fully dynamic

randomized algorithms for graph spanners. ACM Trans. Algorithms 8, 4 (2012),
35:1–35:51. https://doi.org/10.1145/2344422.2344425

[20] Surender Baswana and Sandeep Sen. 2007. A simple and linear time randomized

algorithm for computing sparse spanners in weighted graphs. Random Struct.
Algorithms 30, 4 (2007), 532–563. https://doi.org/10.1002/rsa.20130

[21] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A Deamor-

tization Approach for Dynamic Spanner and Dynamic Maximal Matching. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019. 1899–1918.
https://doi.org/10.1137/1.9781611975482.115

[22] Amartya Shankha Biswas, Michal Dory, Mohsen Ghaffari, SlobodanMitrovic, and

Yasamin Nazari. 2020. Massively Parallel Algorithms for Distance Approximation

and Spanners. CoRR abs/2003.01254 (2020). arXiv:2003.01254 https://arxiv.org/

abs/2003.01254

[23] Guy E. Blelloch, Yan Gu, and Yihan Sun. 2016. A New Efficient Construction on

Probabilistic Tree Embeddings. CoRR abs/1605.04651 (2016). arXiv:1605.04651

http://arxiv.org/abs/1605.04651 https://arxiv.org/abs/1605.04651.

[24] Greg Bodwin, Michael Dinitz, and Yasamin Nazari. 2022. Vertex Fault-Tolerant

Emulators. In 13th Innovations in Theoretical Computer Science Conference (ITCS
2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 215), Mark

Braverman (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 25:1–25:22. https://doi.org/10.4230/LIPIcs.ITCS.2022.25

[25] Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams.

2018. Optimal Vertex Fault Tolerant Spanners (for fixed stretch). In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. 1884–1900. https://doi.org/10.

1137/1.9781611975031.123

[26] Greg Bodwin, Michael Dinitz, and Caleb Robelle. 2021. Optimal Vertex Fault-

Tolerant Spanners in Polynomial Time. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January
10 - 13, 2021, Dániel Marx (Ed.). SIAM, 2924–2938. https://doi.org/10.1137/

1.9781611976465.174

[27] Greg Bodwin, Michael Dinitz, and Caleb Robelle. 2022. Partially Optimal

Edge Fault-Tolerant Spanners. In Proceedings of the 2022 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2022, Virtual Conference, January 9 - 12,
2022, Joseph (Seffi) Naor and Niv Buchbinder (Eds.). SIAM, 3272–3286. https:

//doi.org/10.1137/1.9781611977073.129

[28] Greg Bodwin and Shyamal Patel. 2019. A Trivial Yet Optimal Solution to Vertex

Fault Tolerant Spanners. In Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2,
2019. 541–543. https://doi.org/10.1145/3293611.3331588

[29] G. Borradaile, H. Le, and C. Wulff-Nilsen. 2017. Minor-free graphs have light

spanners. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS ’17). 767–778. https://doi.org/10.1109/FOCS.2017.76

[30] G. Borradaile, H. Le, and C. Wulff-Nilsen. 2019. Greedy spanners are optimal in

doubling metrics. In Proceedings of the 30th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA ‘19). 2371–2379. https://doi.org/10.1137/1.9781611975482.
145

[31] Prosenjit Bose, Paz Carmi, Vida Dujmovic, and Pat Morin. 2018. Near-Optimal

O(k)-Robust Geometric Spanners. CoRR abs/1812.09913 (2018). arXiv:1812.09913

http://arxiv.org/abs/1812.09913

[32] Prosenjit Bose, Vida Dujmovic, Pat Morin, and Michiel H. M. Smid. 2013. Robust

Geometric Spanners. SIAM J. Comput. 42, 4 (2013), 1720–1736. https://doi.org/

10.1137/120874473

[33] J. Bourgain. 1985. On lipschitz embedding of finite metric spaces in Hilbert

space. Israel Journal of Mathematics 52, 1-2 (1985), 46–52. https://doi.org/10.

1007/BF02776078

[34] Jean Bourgain. 1986. The metrical interpretation of superreflexivity in banach

spaces. Israel Journal of Mathematics 56 (1986), 222–230. https://doi.org/10.1007/

BF02766125

[35] J. Bourgain, T. Figiel, and V. Milman. 1986. On Hilbertian subsets of finite metric

spaces. Israel J. Math. 55, 2 (1986), 147–152. https://doi.org/10.1007/BF02801990

[36] Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. 2019. A Spanner for the Day

After. In 35th International Symposium on Computational Geometry, SoCG 2019,
June 18-21, 2019, Portland, Oregon, USA. 19:1–19:15. https://doi.org/10.4230/

LIPIcs.SoCG.2019.19

[37] Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. 2020. Sometimes Reliable

Spanners of Almost Linear Size. In 28th Annual European Symposium on Algo-
rithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference). 27:1–27:15.
https://doi.org/10.4230/LIPIcs.ESA.2020.27

1078

https://doi.org/10.1007/s00454-009-9137-7
https://doi.org/10.1145/3371039
https://doi.org/10.1137/17M1112406
https://doi.org/10.1137/17M1112406
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1016/j.cosrev.2020.100253
https://doi.org/10.1145/2213556.2213560
https://www.researchgate.net/publication/267666953_The_wonderful_Walecki_construction
https://doi.org/10.4230/LIPIcs.ESA.2019.4
https://doi.org/10.4230/LIPIcs.ESA.2019.4
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1109/FSCS.1990.89571
https://doi.org/10.1109/SFCS.1996.548477
https://arxiv.org/abs/2104.03484
https://arxiv.org/abs/2104.03484
https://doi.org/10.1016/j.jcss.2005.05.008
https://doi.org/10.4230/LIPIcs.ICALP.2019.20
https://doi.org/10.4230/LIPIcs.ICALP.2019.20
https://doi.org/10.1016/j.jcss.2019.04.006
https://doi.org/10.1007/s00454-004-1100-z
https://doi.org/10.1016/j.ipl.2007.11.001
https://doi.org/10.1145/2344422.2344425
https://doi.org/10.1002/rsa.20130
https://doi.org/10.1137/1.9781611975482.115
https://arxiv.org/abs/2003.01254
https://arxiv.org/abs/2003.01254
https://arxiv.org/abs/2003.01254
https://arxiv.org/abs/1605.04651
http://arxiv.org/abs/1605.04651
https://arxiv.org/abs/1605.04651
https://doi.org/10.4230/LIPIcs.ITCS.2022.25
https://doi.org/10.1137/1.9781611975031.123
https://doi.org/10.1137/1.9781611975031.123
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1137/1.9781611977073.129
https://doi.org/10.1137/1.9781611977073.129
https://doi.org/10.1145/3293611.3331588
https://doi.org/10.1109/FOCS.2017.76
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1137/1.9781611975482.145
https://arxiv.org/abs/1812.09913
http://arxiv.org/abs/1812.09913
https://doi.org/10.1137/120874473
https://doi.org/10.1137/120874473
https://doi.org/10.1007/BF02776078
https://doi.org/10.1007/BF02776078
https://doi.org/10.1007/BF02766125
https://doi.org/10.1007/BF02766125
https://doi.org/10.1007/BF02801990
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
https://doi.org/10.4230/LIPIcs.ESA.2020.27


STOC ’22, June 20–24, 2022, Rome, Italy Arnold Filtser and Hung Le

[38] Costas Busch, Chinmoy Dutta, Jaikumar Radhakrishnan, Rajmohan Rajaraman,

and Srinivasagopalan Srivathsan. 2012. Split and Join: Strong Partitions and Uni-

versal Steiner Trees for Graphs. In 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012.
IEEE Computer Society, 81–90. https://doi.org/10.1109/FOCS.2012.45

[39] Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. 2004. Approximation

Algorithms for the 0-Extension Problem. SIAM J. Comput. 34, 2 (2004), 358–372.
[40] P. B. Callahan and S. R. Kosaraju. 1995. A decomposition of multidimensional

point sets with applications to 𝑘-nearest-neighbors and 𝑛-body potential fields.

Journal of the ACM 42, 1 (1995), 67–90. https://doi.org/10.1145/200836.200853

[41] T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. 2016.

On Hierarchical Routing in Doubling Metrics. ACM Trans. Algorithms 12, 4 (2016),
55:1–55:22.

[42] Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. 2020. On Locality-

Sensitive Orderings and Their Applications. SIAM J. Comput. 49, 3 (2020), 583–600.
https://doi.org/10.1137/19M1246493

[43] Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. 1995. New

sparseness results on graph spanners. Int. J. Comput. Geom. Appl. 5 (1995),

125–144. https://doi.org/10.1142/S0218195995000088

[44] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. 2010. Fault

Tolerant Spanners for General Graphs. SIAM J. Comput. 39, 7 (2010), 3403–3423.
https://doi.org/10.1137/090758039

[45] Shiri Chechik and Christian Wulff-Nilsen. 2018. Near-Optimal Light Spanners.

ACM Trans. Algorithms 14, 3 (2018), 33:1–33:15. https://doi.org/10.1145/3199607

[46] Vincent Cohen-Addad, Arnold Filtser, Philip N. Klein, and Hung Le. 2020. On

Light Spanners, Low-treewidth Embeddings and Efficient Traversing in Minor-

free Graphs. In 61th Annual IEEE Symposium on Foundations of Computer Science,
FOCS. 589–600. See: conference version, arXiv version,.

[47] Michael Dinitz and Robert Krauthgamer. 2011. Fault-tolerant spanners: better

and simpler. In Proceedings of the 30th Annual ACM Symposium on Principles of
Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011. 169–178.
https://doi.org/10.1145/1993806.1993830

[48] Michael Dinitz and Caleb Robelle. 2020. Efficient and Simple Algorithms for Fault-

Tolerant Spanners. In PODC ’20: ACM Symposium on Principles of Distributed
Computing, Virtual Event, Italy, August 3-7, 2020. 493–500. https://doi.org/10.

1145/3382734.3405735

[49] Michael Elkin. 2011. Streaming and fully dynamic centralized algorithms for

constructing and maintaining sparse spanners. ACM Trans. Algorithms 7, 2 (2011),
20:1–20:17. https://doi.org/10.1145/1921659.1921666

[50] M. Elkin, A. Filtser, and O. Neiman. 2020. Distributed Construction of Light

Networks. In Proceedings of the 39th Symposium on Principles of Distributed
Computing (PODC’20). 483—-492. https://doi.org/10.1145/3382734.3405701

[51] Michael Elkin, Ofer Neiman, and Shay Solomon. 2015. Light Spanners. SIAM J.
Discret. Math. 29, 3 (2015), 1312–1321. https://doi.org/10.1137/140979538

[52] Michael Elkin and Shay Solomon. 2013. Fast Constructions of Light-Weight

Spanners for General Graphs. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013. 513–525. https://doi.org/10.1137/1.9781611973105.37

[53] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal

Talgam-Cohen, and Kunal Talwar. 2014. Vertex Sparsifiers: New Results from

Old Techniques. SIAM J. Comput. 43, 4 (2014), 1239–1262. https://doi.org/10.

1137/130908440

[54] P. Erdős. 1964. Extremal problems in graph theory. Theory of Graphs and Its
Applications (Proc. Sympos. Smolenice) (1964), 29–36.

[55] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on

approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69, 3 (Nov.
2004), 485–497. https://doi.org/10.1016/j.jcss.2004.04.011

[56] Arnold Filtser. 2019. On Strong Diameter Padded Decompositions. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Tech-
nology, Cambridge, MA, USA. 6:1–6:21. https://doi.org/10.4230/LIPIcs.APPROX-

RANDOM.2019.6

[57] Arnold Filtser. 2019. On Strong Diameter Padded Decompositions. CoRR
abs/1906.09783 (2019). arXiv:1906.09783 http://arxiv.org/abs/1906.09783

[58] Arnold Filtser. 2020. Scattering and Sparse Partitions, and Their Applications. In

47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference) (LIPIcs, Vol. 168),
Artur Czumaj, Anuj Dawar, and Emanuela Merelli (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 47:1–47:20. https://doi.org/10.4230/LIPIcs.

ICALP.2020.47

[59] Arnold Filtser. 2021. Hop-Constrained Metric Embeddings and their Applications.

In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022. IEEE, 492–503. https://doi.org/10.1109/

FOCS52979.2021.00056

[60] Arnold Filtser, Michael Kapralov, and Navid Nouri. 2020. Graph Spanners by

Sketching in Dynamic Streams and the Simultaneous Communication Model.

CoRR abs/2007.14204 (2020). arXiv:2007.14204 https://arxiv.org/abs/2007.14204

To appear in SODA 2021.

[61] Arnold Filtser and Hung Le. 2021. Clan embeddings into trees, and low treewidth

graphs. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Comput-
ing, Virtual Event, Italy, June 21-25, 2021, Samir Khuller and Virginia Vassilevska

Williams (Eds.). ACM, 342–355. https://doi.org/10.1145/3406325.3451043 Full

version at https://arxiv.org/abs/2101.01146.

[62] Arnold Filtser and Hung Le. 2021. Locality-Sensitive Orderings and Applications

to Reliable Spanners. CoRR abs/2101.07428 (2021). arXiv:2101.07428 https:

//arxiv.org/abs/2101.07428

[63] Arnold Filtser and Ofer Neiman. 2018. Light Spanners for High Dimensional

Norms via Stochastic Decompositions. In 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland. 29:1–29:15. https:

//doi.org/10.4230/LIPIcs.ESA.2018.29

[64] Arnold Filtser and Shay Solomon. 2020. The Greedy Spanner Is Existentially Opti-

mal. SIAM J. Comput. 49, 2 (2020), 429–447. https://doi.org/10.1137/18M1210678

[65] Lee-Ad Gottlieb. 2015. A Light Metric Spanner. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015. 759–772. https://doi.org/10.1109/FOCS.2015.52

[66] Anupam Gupta, Robert Krauthgamer, and James R. Lee. 2003. Bounded Geome-

tries, Fractals, and Low-Distortion Embeddings. In 44th Symposium on Founda-
tions of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings. 534–543. https://doi.org/10.1109/SFCS.2003.1238226

[67] S. Har-Peled. 2020. Theory seminar talk, CS, UIUC, 10/12/20: Reliable Spanners for
Metric Spaces. Youtube. https://youtu.be/wo0unW9HCtg?t=3630.

[68] Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. 2013. Euclidean

spanners in high dimensions. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013. 804–809. https://doi.org/10.1137/1.9781611973105.57

[69] Sariel Har-Peled, Manor Mendel, and Dániel Oláh. 2021. Reliable Spanners

for Metric Spaces. In 37th International Symposium on Computational Geometry
(SoCG’21). 43:1–43:13. https://doi.org/10.4230/LIPIcs.SoCG.2021.43 Full version

at https://arxiv.org/abs/2007.08738.

[70] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
Jeffrey Scott Vitter (Ed.). ACM, 604–613. https://doi.org/10.1145/276698.276876

[71] William Johnson and Joram Lindenstrauss. 1984. Extensions of Lipschitz map-

pings into a Hilbert space. Contemp. Math. 26 (1984), 189–206.
[72] Iyad A. Kanj, Ljubomir Perkovic, and Ge Xia. 2008. Computing Lightweight

Spanners Locally. In Distributed Computing, 22nd International Symposium, DISC
2008, Arcachon, France, September 22-24, 2008. Proceedings. 365–378. https://doi.

org/10.1007/978-3-540-87779-0_25

[73] Michael Kapralov and David P. Woodruff. 2014. Spanners and sparsifiers in

dynamic streams. In ACM Symposium on Principles of Distributed Computing,
PODC ’14, Paris, France, July 15-18, 2014. 272–281. https://doi.org/10.1145/2611462.
2611497

[74] P. N. Klein, S. A. Plotkin, and S. Rao. 1993. Excluded Minors, Network Decom-

position, and Multicommodity Flow. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (STOC ‘93). 682–690. https://doi.org/10.1145/
167088.167261

[75] Hung Le and Shay Solomon. 2019. Truly Optimal Euclidean Spanners. In 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019. 1078–1100. https://doi.org/10.1109/FOCS.

2019.00069

[76] Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. 2002. Improved

Algorithms for Constructing Fault-Tolerant Spanners. Algorithmica 32, 1 (2002),
144–156. https://doi.org/10.1007/s00453-001-0075-x

[77] Tamás Lukovszki. 1999. New Results on Fault Tolerant Geometric Spanners. In

Algorithms and Data Structures, Frank Dehne, Jörg-Rüdiger Sack, Arvind Gupta,

and Roberto Tamassia (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

193–204. https://doi.org/10.1007/3-540-48447-7_20

[78] Jiří Matoušek. 1999. On embedding trees into uniformly convex Banach spaces.

Israel Journal of Mathematics 114, 1 (1999), 221–237. https://doi.org/10.1007/

BF02785579

[79] Manor Mendel and Assaf Naor. 2007. Ramsey partitions and proximity data

structures. Journal of the European Mathematical Society 9, 2 (2007), 253–275.

https://doi.org/10.4171/JEMS/79 6.

[80] Assaf Naor and Terence Tao. 2012. Scale-oblivious metric fragmentation and

the nonlinear Dvoretzky theorem. Israel Journal of Mathematics 192, 1 (2012),
489–504. https://doi.org/10.1007/s11856-012-0039-7

[81] Giri Narasimhan and Michiel H. M. Smid. 2007. Geometric spanner networks.
Cambridge University Press. https://doi.org/10.1017/CBO9780511546884

[82] D. Peleg and A. A. Schäffer. 1989. Graph spanners. Journal of Graph Theory 13, 1

(1989), 99–116. https://doi.org/10.1002/jgt.3190130114

[83] Shay Solomon. 2013. Sparse Euclidean Spanners with Tiny Diameter. ACM Trans.
Algorithms 9, 3 (2013), 28:1–28:33. https://doi.org/10.1145/2483699.2483708

[84] S. Solomon. 2014. Euclidean Steiner Shallow-Light Trees. In Proceedings of the
Thirtieth Annual Symposium on Computational Geometry (SoCG ’14). 454:454–
454:463.

1079

https://doi.org/10.1109/FOCS.2012.45
https://doi.org/10.1145/200836.200853
https://doi.org/10.1137/19M1246493
https://doi.org/10.1142/S0218195995000088
https://doi.org/10.1137/090758039
https://doi.org/10.1145/3199607
http://ieee-focs.org/FOCS-2020-Papers/pdfs/FOCS2020-SFPLmbQgSLgOwZlanGgzq/962100a589/962100a589.pdf
https://arxiv.org/abs/2009.05039
https://doi.org/10.1145/1993806.1993830
https://doi.org/10.1145/3382734.3405735
https://doi.org/10.1145/3382734.3405735
https://doi.org/10.1145/1921659.1921666
https://doi.org/10.1145/3382734.3405701
https://doi.org/10.1137/140979538
https://doi.org/10.1137/1.9781611973105.37
https://doi.org/10.1137/130908440
https://doi.org/10.1137/130908440
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.6
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.6
https://arxiv.org/abs/1906.09783
http://arxiv.org/abs/1906.09783
https://doi.org/10.4230/LIPIcs.ICALP.2020.47
https://doi.org/10.4230/LIPIcs.ICALP.2020.47
https://doi.org/10.1109/FOCS52979.2021.00056
https://doi.org/10.1109/FOCS52979.2021.00056
https://arxiv.org/abs/2007.14204
https://arxiv.org/abs/2007.14204
https://doi.org/10.1145/3406325.3451043
https://arxiv.org/abs/2101.01146
https://arxiv.org/abs/2101.07428
https://arxiv.org/abs/2101.07428
https://arxiv.org/abs/2101.07428
https://doi.org/10.4230/LIPIcs.ESA.2018.29
https://doi.org/10.4230/LIPIcs.ESA.2018.29
https://doi.org/10.1137/18M1210678
https://doi.org/10.1109/FOCS.2015.52
https://doi.org/10.1109/SFCS.2003.1238226
https://youtu.be/wo0unW9HCtg?t=3630
https://doi.org/10.1137/1.9781611973105.57
https://doi.org/10.4230/LIPIcs.SoCG.2021.43
https://arxiv.org/abs/2007.08738
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/978-3-540-87779-0_25
https://doi.org/10.1007/978-3-540-87779-0_25
https://doi.org/10.1145/2611462.2611497
https://doi.org/10.1145/2611462.2611497
https://doi.org/10.1145/167088.167261
https://doi.org/10.1145/167088.167261
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1007/s00453-001-0075-x
https://doi.org/10.1007/3-540-48447-7_20
https://doi.org/10.1007/BF02785579
https://doi.org/10.1007/BF02785579
https://doi.org/10.4171/JEMS/79
https://doi.org/10.1007/s11856-012-0039-7
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1145/2483699.2483708

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Ultrametric Covers
	3.1 From Pairwise Partition Cover to Ultrametric Cover: Proof of lem:PairwisePartitionCoverSchemeToUltrametric
	3.2 Pairwise Partition Cover for General Metrics: Proof of lem:pairwise-partition-general
	3.3 Ultrametric Cover for Doubling Spaces

	4 Locality Sensitive Ordering
	5 Triangle Locality Sensitive Ordering
	6 Conclusions
	References

