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ABSTRACT
In low distortion metric embeddings, the goal is to embed a host

“hard” metric space into a “simpler” target space while approxi-

mately preserving pairwise distances. A highly desirable target

space is that of a tree metric. Unfortunately, such embedding will

result in a huge distortion. A celebrated bypass to this problem is sto-

chastic embedding with logarithmic expected distortion. Another

bypass is Ramsey-type embedding, where the distortion guarantee

applies only to a subset of the points. However, both these solutions

fail to provide an embedding into a single tree with a worst-case

distortion guarantee on all pairs. In this paper, we propose a novel

third bypass called clan embedding. Here each point 𝑥 is mapped

to a subset of points 𝑓 (𝑥), called a clan, with a special chief point

𝜒 (𝑥) ∈ 𝑓 (𝑥). The clan embedding has multiplicative distortion 𝑡 if

for every pair (𝑥,𝑦) some copy 𝑦′ ∈ 𝑓 (𝑦) in the clan of 𝑦 is close to

the chief of 𝑥 : min𝑦′∈𝑓 (𝑦) 𝑑 (𝑦′, 𝜒 (𝑥)) ≤ 𝑡 ·𝑑 (𝑥,𝑦). Our first result is
a clan embedding into a tree with multiplicative distortion𝑂 ( log𝑛

𝜖 )
such that each point has 1 + 𝜖 copies (in expectation). In addition,

we provide a “spanning” version of this theorem for graphs and

use it to devise the first compact routing scheme with constant size

routing tables.

We then focus on minor-free graphs of diameter prameterized

by 𝐷 , which were known to be stochastically embeddable into

bounded treewidth graphs with expected additive distortion 𝜖𝐷 .

We devise Ramsey-type embedding and clan embedding analogs of

the stochastic embedding.We use these embeddings to construct the

first (bicriteria quasi-polynomial time) approximation scheme for

the metric 𝜌-dominating set and metric 𝜌-independent set problems

in minor-free graphs.
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1 INTRODUCTION
Low distortion metric embeddings provide a powerful algorithmic

toolkit, with applications ranging from approximation/sublinear/

online/distributed algorithms [7, 30, 59, 63] to machine learning

[52], biology [54], and vision [9]. Classically, we say that an em-

bedding 𝑓 from a metric space (𝑋,𝑑𝑋 ) to a metric space (𝑌,𝑑𝑌 )
has multiplicative distortion 𝑡 , if for every pair of points 𝑢, 𝑣 ∈ 𝑋 it

holds that 𝑑𝑋 (𝑢, 𝑣) ≤ 𝑑𝑌 (𝑓 (𝑢), 𝑓 (𝑣)) ≤ 𝑡 ·𝑑𝑋 (𝑢, 𝑣). Typical applica-
tions of metric embeddings naturally have the following structures:

take some instance of a problem in a “hard” metric space (𝑋,𝑑𝑋 );
embed 𝑋 into a “simple” metric space (𝑌,𝑑𝑌 ) via a low-distortion
metric embedding 𝑓 ; solve the problem in 𝑌 , and “pull-back” the

solution in 𝑋 . Thus, the objectives are low distortion and “simple”

target space.

Simple target spaces that immediately come to mind are Eu-

clidean space and tree metric, or — even better — an ultrametric.
1

In a celebrated result, Bourgain [28] showed that every 𝑛-point met-

ric space embeds into Euclidean space with multiplicative distortion

𝑂 (log𝑛) (which is tight [63]). On the other hand, any embedding

of the 𝑛-vertex cycle graph 𝐶𝑛 into a tree metric will incur mul-

tiplicative distortion Ω(𝑛) [68]. Karp [56] observed that deleting

a random edge from 𝐶𝑛 results in an embedding into a line with

expected distortion 2 (see Figure 1(a)). This idea was developed

by Bartal [14, 15] (improving over [6]), and culminating in the cel-

ebrated work of Fakcharoenphol, Rao, and Talwar [46] (see also

[16]) who showed that every 𝑛-point metric space stochastically

embeds into trees (actually ultrametrics) with expected multiplica-

tive distortion 𝑂 (log𝑛). Specifically, there is a distribution D, over

dominating metric embeddings
2
into trees (ultrametrics), such

that ∀𝑢, 𝑣 ∈ 𝑋 , E(𝑓 ,𝑇 )∼D𝑑𝑇 (𝑓 (𝑢), 𝑓 (𝑣)) ≤ 𝑂 (log𝑛) · 𝑑𝑋 (𝑢, 𝑣). The
𝑂 (log𝑛) multiplicative distortion is known to be optimal [14]. Sto-

chastic embeddings into trees are widely successful and have found

numerous applications (see e.g. [55]).

In many applications of metric embeddings, a worst-case distor-

tion guarantee is required. A different type of compromise (com-

pared to expected distortion) is provided by Ramsey-type embed-

dings. The classical Ramsey problem for metric spaces was intro-

duced by Bourgain et al. [29], and is concerned with finding "nice"

structures in arbitrary metric spaces. Following [19, 21], Mendel

1
Ultrametric is a metric space satisfying a strong form of the triangle inequality:

𝑑 (𝑥, 𝑧) ≤ max {𝑑 (𝑥, 𝑦), 𝑑 (𝑦, 𝑧) } (for all 𝑥, 𝑦, 𝑧). Ultrametrics embed isometrically

into both Euclidean space [62], and tree metric. See Definition 3.1.

2
Metric embedding 𝑓 : 𝑋 → 𝑌 is dominating if ∀𝑢, 𝑣 ∈ 𝑋 , 𝑑𝑋 (𝑢, 𝑣) ≤
𝑑𝑌 (𝑓 (𝑢), 𝑓 (𝑣)) .
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and Naor [65] showed that for every integer parameter 𝑘 ≥ 1,

every 𝑛-point metric (𝑋,𝑑) has a subset 𝑀 ⊆ 𝑋 of size at least

𝑛1−1/𝑘
that embeds into a tree (ultrametric) with multiplicative

distortion 𝑂 (𝑘) (see [1, 25, 66] for improvements). In fact, the em-

bedding has multiplicative distortion 𝑂 (𝑘) for any pair in𝑀 × 𝑋 .
We say that the vertices in 𝑀 are satisfied (see Figure 1(b) for an

illustration). As a corollary, every 𝑛-point metric space (𝑋,𝑑𝑋 )
admits a collection T of 𝑘 · 𝑛1/𝑘

dominating trees over 𝑋 and a

mapping home : 𝑋 → T , such that for every 𝑥,𝑦 ∈ 𝑋 , it holds
that 𝑑home(𝑥) (𝑥,𝑦) ≤ 𝑂 (𝑘) · 𝑑𝑋 (𝑥,𝑦). These are called Ramsey

trees, and they have found applications to online algorithms [19],

approximate distance oracles [35, 65], and routing [1].

A new type of embedding: clan embedding. Recall that our initial

goal was to embed a general metric space into a “simple” target

space, specifically a tree metric. A drawback of both the stochastic

embedding and the Ramsey-type embedding is that the embeddings

are actually into a collection of trees rather than into a single one;

thus the target space is not as simple as one might desire. Each em-

bedding type makes a different type of compromise: the distortion

guaranteed in stochastic embedding is only in expectation, while

in the Ramsey-type embedding, only a subset of the vertices enjoys

a bounded distortion guarantee. In this paper, we propose a novel

type of compromise, which we call clan embedding. Here we will

have a single embedding with a worst-case guarantee on all vertex

pairs. The caveat is that each vertex might be mapped to multiple

copies. This violates the classical paradigm of having a one-to-one

relationship between the source and target spaces. However, we

obtain a map into a single tree with a worst-case guarantee; this is

beneficial and opens a new array of possibilities.

A one-to-many embedding 𝑓 : 𝑋 → 2
𝑌
maps each point 𝑥 into

a subset 𝑓 (𝑥) ⊆ 𝑌 called the clan of 𝑥 . Each vertex 𝑥 ′ ∈ 𝑓 (𝑥) is
called a copy of 𝑥 (see Definition 3.2). Clan embedding is a pair

(𝑓 , 𝜒), where 𝑓 is a one-to-many embedding, and 𝜒 : 𝑋 → 𝑌

maps each vertex 𝑥 to a special vertex 𝜒 (𝑥) ∈ 𝑓 (𝑥) called the chief.

Clan embeddings are dominating, that is, for every 𝑥,𝑦 ∈ 𝑋 , the
distance between every two copies is at least the original distance:

min𝑥 ′∈𝑓 (𝑥),𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑥 ′, 𝑦′) ≥ 𝑑𝑋 (𝑥,𝑦). (𝑓 , 𝜒) has multiplicative

distortion 𝑡 , if for every 𝑥,𝑦 ∈ 𝑋 , some vertex in the clan of 𝑥 is

close to the chief of 𝑦: min𝑥 ′∈𝑓 (𝑥) 𝑑𝑌 (𝑥 ′, 𝜒 (𝑦)) ≤ 𝑡 · 𝑑𝑋 (𝑥,𝑦) (see
Definition 3.3). See Figure 1(c) for an illustration.

Clan embeddings into trees. One can easily construct an isometric

clan embedding into a tree by allowing 𝑛 copies for each vertex.

On the other hand, with a single copy per vertex, the clan embed-

ding becomes a classic embedding, which requires a multiplicative

distortion of Ω(𝑛). Our goal is to construct a low distortion clan

embedding, while keeping the number of copies each vertex has

as small as possible. To this end, we construct a distribution over

clan embeddings, where all the embeddings in the support have a

worst-case distortion guarantee; however, the expected number of

copies each vertex has is bounded by a constant close to 1.

Theorem 1.1 (Clan embedding into ultrametric). Given an

𝑛-point metric space (𝑋,𝑑𝑋 ) and parameter 𝜖 ∈ (0, 1], there is a
uniform distribution D over 𝑂 (𝑛 log𝑛/𝜖2) clan embeddings (𝑓 , 𝜒)
into ulrametrics with multiplicative distortion 𝑂 ( log𝑛

𝜖 ) such that for

every point 𝑥 ∈ 𝑋 , E𝑓 ∼D [|𝑓 (𝑥) |] ≤ 1 + 𝜖 .

In addition, for every 𝑘 ∈ N, there is a uniform distribution D
over 𝑂 (𝑛1+ 2

𝑘 log𝑛) clan embeddings (𝑓 , 𝜒) into ulrametrics with

multiplicative distortion 16𝑘 such that for every point 𝑥 ∈ 𝑋 ,

E𝑓 ∼D [|𝑓 (𝑥) |] = 𝑂 (𝑛
1

𝑘 ).

We fist show that there exists a distribution D of clan embed-

dings that has distortion and expected clan size via the minimax

theorem. We then use the multiplicative weights update (MWU)

method to explicitly construct a uniform distribution D of polyno-

mial support as specified by Theorem 1.1.

Our clan embedding into ultrametric is asymptotically tight (up

to a constant factor in the distortion), and cannot be improved

even if we embed into a general tree (rather than to the much

more restricted structure of an ultrametric). Additionally, our lower

bound implies that the ultra-sparse spanner construction of Elkin

and Neiman [44] is asymptotically tight. (Elkin and Neiman [44]

constructed a spanner with stretch 𝑂 ( log𝑛
𝜖 ) and (1 + 𝜖)𝑛 edges.)

Theorem 1.2 (Lower bound for clan embedding into a tree).

For every fixed 𝜖 ∈ (0, 1) and large enough 𝑛, there is an 𝑛-point

metric space (𝑋,𝑑𝑋 ) such that for every clan embedding (𝑓 , 𝜒) of
𝑋 into a tree with multiplicative distortion 𝑂 ( log𝑛

𝜖 ), it holds that∑
𝑥 ∈𝑋 |𝑓 (𝑥) | ≥ (1 + 𝜖)𝑛.

Furthermore, for every 𝑘 ∈ N, there is an 𝑛-point metric space (𝑋,𝑑𝑋 )
such that for every clan embedding (𝑓 , 𝜒) of 𝑋 into a tree with mul-

tiplicative distortion 𝑂 (𝑘), it holds that ∑𝑥 ∈𝑋 |𝑓 (𝑥) | ≥ Ω(𝑛1+ 1

𝑘 ).

Often, we are given a weighted graph𝐺 = (𝑉 , 𝐸,𝑤), and the goal
is to embed the shortest path metric of the graph 𝑑𝐺 into a tree 𝑇 .

However, if, for example, one is required to construct a network

while using only pre-existing edges from 𝐸, it is desirable that the

tree 𝑇 will be a subgraph of 𝐺 , called a spanning tree. Abraham

and Neiman [4] (improving over [43]) constructed a stochastic

embedding of general graphs into spanning trees with expected

distortion 𝑂 (log𝑛 log log𝑛) (losing a log log𝑛 factor compared to

general trees [46]). Later, Abraham et al. [1] constructed Ramsey

spanning trees, showing that for every 𝑘 ∈ N, every graph can be

embedded into a spanning tree with a subset 𝑀 of at least 𝑛1− 1

𝑘

satisfied vertices which suffers a distortion at most 𝑂 (𝑘 log log𝑛)
w.r.t. any other vertex (again losing a log log𝑛 factor compared to

general trees). Here we provide a “spanning” analog of Theorem 1.1.

Similar to [1, 4], we also lose a log log𝑛 factor compared to general

trees. In particular, by Theorem 1.2, our spanning clan embedding is

optimal up to second-order terms. As an application, we construct

the first compact routing scheme with routing tables of constant

size in expectation; see Section 1.1.1. We say that a clan embedding

(𝑓 , 𝜒) of a graph 𝐺 into a graph 𝐻 is spanning if 𝑓 (𝑉 (𝐺)) = 𝑉 (𝐻 )
(i.e., every vertex in 𝐻 is an image of a vertex in 𝐺) and for every

edge {𝑣 ′, 𝑢 ′} ∈ 𝐸 (𝐻 ) where 𝑣 ′ ∈ 𝑓 (𝑣), 𝑢 ′ ∈ 𝑓 (𝑢), it holds that
{𝑣,𝑢} ∈ 𝐸 (𝐺) (see Definitions 3.2 and 3.3).

Theorem 1.3 (Spanning clan embedding into trees). Given

an 𝑛-vertex weighted graph𝐺 = (𝑉 , 𝐸,𝑤) and parameter 𝜖 ∈ (0, 1],
there is a distribution D over spanning clan embeddings (𝑓 , 𝜒) into
trees with multiplicative distortion 𝑂 ( log𝑛 log log𝑛

𝜖 ) such that for ev-

ery vertex 𝑣 ∈ 𝑉 , E𝑓 ∼D [|𝑓 (𝑣) |] ≤ 1 + 𝜖 .
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Figure 1: Three different types of embeddings of the cycle graph 𝐶𝑛 into a tree.
(a) On the left illustrated a stochastic embedding that is created by deleting an edge {𝑣𝑖 , 𝑣𝑖+1} uniformly at random. The expected
multiplicative distortion of a pair of neighboring vertices 𝑣 𝑗 , 𝑣 𝑗+1 is E[𝑑𝑇 (𝑣 𝑗 , 𝑣 𝑗+1)] = 𝑛−1

𝑛 · 1+ 1

𝑛 · (𝑛− 1) = 2𝑛−2

𝑛 < 2. By the triangle
inequality and linearity of expectation, the expected multiplicative distortion is ≤ 2.
(b) In the middle illustrated a Ramsey type embedding: an arbitrary edge {𝑣𝑖 , 𝑣𝑖+1} is deleted. The vertices in the subset𝑀 (on
the thick red line), which constitutes a (1 − 2𝜖) fraction of the vertex set, are satisfied. That is, they suffer from a multiplicative
distortion at most 1

𝜖 w.r.t. any other vertex.
(c) On the right illustrated a clan embedding, where 𝑖 is chosen uniformly at random. The chief of a vertex 𝑣 𝑗 denoted 𝑣 𝑗 . Each
vertex 𝑣 𝑗 ∈ {𝑣𝑖+1−𝜖𝑛, . . . , 𝑣𝑖+𝜖𝑛} has additional copy 𝑣 ′𝑗 ; thus the probability that a vertex has two copies is 2𝜖, implying that
E[|𝑓 (𝑣𝑎) |] = 1 + 2𝜖. The distortion is min{𝑑 (𝑣𝑎, 𝑣𝑏 ), 𝑑 (𝑣 ′𝑎, 𝑣𝑏 )} ≤ 1

𝜖 · 𝑑𝐶𝑛
(𝑣𝑎, 𝑣𝑏 )

In addition, for every 𝑘 ∈ N, there is a distribution D over span-

ning clan embeddings (𝑓 , 𝜒) into trees with multiplicative distortion

𝑂 (𝑘 log log𝑛), where for every vertex 𝑣 ∈ 𝑉 ,E𝑓 ∼D [|𝑓 (𝑣) |] = 𝑂 (𝑛
1

𝑘 ).

Clan embedding of minor-free graphs into bounded treewidth

graphs. As [28] and [46] are tight, a natural question arises: by em-

bedding from a simpler space (than general 𝑛-point metric space)

into a richer space (than trees), could the distortion be reduced?

The family of low-treewidth graphs is an excellent candidate for a

target space: it is a much more expressive target space than trees,

while many hard problems remain tractable. Unfortunately, by the

work of Chakrabarti et al. [32] (see also [31]), there are 𝑛-vertex

planar graphs such that every (stochastic) embedding into 𝑜 (
√
𝑛)-

treewidth graphs must incur expected multiplicative distortion

Ω(log𝑛). Bypassing this roadblock, Fox-Epstein et al. [51] (improv-

ing over [42]), showed how to embed planar metrics into bounded

treewidth graphs while incurring only a small additive distortion.

Specifically, given a planar graph 𝐺 and a parameter 𝜖 , they con-

structed a deterministic dominating embedding 𝑓 into a graph

𝐻 of treewidth poly( 1

𝜖 ), such that ∀𝑢, 𝑣 ∈ 𝐺 , 𝑑𝐻 (𝑓 (𝑢), 𝑓 (𝑣)) ≤
𝑑𝐺 (𝑢, 𝑣) + 𝜖𝐷 , where 𝐷 is the diameter of 𝐺 . While 𝜖𝐷 looks like a

crude additive bound, it suffices to obtain approximation schemes

for several classic problems: 𝑘-center, vehicle routing, metric 𝜌-

dominating set, and metric 𝜌-independent set.

Following the success in planar graphs, Cohen-Addad et al. [36]

wanted to generalize to minor-free graphs. Unfortunately, they

showed that already obtaining additive distortion
1

20
𝐷 for𝐾6-minor-

free graphs requires the host graph to have treewidth Ω(
√
𝑛). In-

spired by the case of trees, [36] bypass this barrier by constructing

a stochastic embedding from 𝐾𝑟 -minor-free 𝑛-vertex graphs into a

distribution over treewidth-𝑂𝑟 ( log𝑛

𝜖2
) graphs with expected addi-

tive distortion 𝜖𝐷 , 3 that is ∀𝑢, 𝑣 ∈ 𝐺 , E(𝑓 ,𝐻 )∼D [𝑑𝐻 (𝑓 (𝑢), 𝑓 (𝑣))] ≤

3𝑂𝑟 hides some function depending only on 𝑟 . That is, there is some function 𝜒 :

N→ N such that𝑂𝑟 (𝑥) ≤ 𝜒 (𝑟 ) · 𝑥 .

𝑑𝐺 (𝑢, 𝑣) + 𝜖𝐷 . Similar to the case in planar graphs, Cohen-Addad

et al. [36] used their embedding to construct an approximation

scheme for the capacitated vehicle routing problem in 𝐾𝑟 -minor-

free graphs. However, due to the stochastic nature of the embed-

ding, it was not strong enough to imply any results for the metric

𝜌-dominating/independent problems in minor-free graphs, which,

prior to our work, remain wide open.

In this paper, similar to the case of trees, we construct Ramsey-

type and clan embedding analogs to the stochastic embedding of

[36]. Our Ramsey-type embedding bypasses the lower bound of

Ω(
√
𝑛) from [36] while guaranteeing a worst-case distortion (for

a large random subset of vertices). As an application, we obtain a

bicriteria quasi-polynomial time approximation scheme (QPTAS)

5
for the metric 𝜌-independent set problem in minor-free graphs

(see Section 1.1.2).

Theorem 1.4 (Ramsey-type embedding of minor-free graphs).

Given an 𝑛-vertex 𝐾𝑟 -minor-free graph 𝐺 = (𝑉 , 𝐸,𝑤) with diame-

ter 𝐷 and parameters 𝜖 ∈ (0, 1

4
), 𝛿 ∈ (0, 1), there is a distribution

over dominating embeddings 𝑔 : 𝐺 → 𝐻 into graphs of treewidth

𝑂𝑟 ( log
2 𝑛

𝜖𝛿
), such that there is a subset 𝑀 ⊆ 𝑉 of vertices for which

the following claims hold:

(1) For every 𝑢 ∈ 𝑉 , Pr[𝑢 ∈ 𝑀] ≥ 1 − 𝛿 .
(2) For every 𝑢 ∈ 𝑀 and 𝑣 ∈ 𝑉 ,

𝑑𝐻 (𝑔(𝑢), 𝑔(𝑣)) ≤ 𝑑𝐺 (𝑢, 𝑣) + 𝜖𝐷.

By setting 𝛿 = 1

2
and repeating log𝑛 times, a straightforward

corollary is the following.

Corollary 1.5. Given a 𝐾𝑟 -minor-free 𝑛-vertex graph 𝐺 with

diameter 𝐷 and parameter 𝜖 ∈ (0, 1

4
), there are log𝑛 dominating

embeddings 𝑔1, . . . , 𝑔log𝑛 into graphs of treewidth 𝑂𝑟 ( log
2 𝑛
𝜖 ), such

that for every vertex 𝑣 , there is some embedding 𝑔𝑖𝑣 , such that

∀𝑢 ∈ 𝑉 , 𝑑𝐻𝑖𝑣
(𝑔𝑖𝑣 (𝑢), 𝑔𝑖𝑣 (𝑣)) ≤ 𝑑𝐺 (𝑢, 𝑣) + 𝜖𝐷 .
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While Ramsey-type embedding is sufficient for the metric 𝜌-

independent set problem (as we can restrict our search to indepen-

dent sets in𝑀), we cannot use it for the metric 𝜌-dominating set

problem (as every good solution might contain vertices outside𝑀).

To resolve this issue, we construct a clan embedding of minor-free

graphs into bounded treewidth graphs. As we have a worst-case

distortion guarantee for all vertex pairs, we obtain a QPTAS
5
for

the metric 𝜌-dominating set problem in minor-free graphs (see

Section 1.1.2).

Theorem 1.6 (Clan embedding forminor-free graphs). Given

a 𝐾𝑟 -minor-free 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸,𝑤) of diameter 𝐷 and

parameters 𝜖 ∈ (0, 1

4
), 𝛿 ∈ (0, 1), there is a distribution D over

clan embeddings (𝑓 , 𝜒) with additive distortion 𝜖𝐷 into graphs of

treewidth 𝑂𝑟 ( log
2 𝑛

𝛿𝜖
) such that for every 𝑣 ∈ 𝑉 , E[|𝑓 (𝑣) |] ≤ 1 + 𝛿 .

1.1 Applications
1.1.1 Compact Routing Scheme. A routing scheme in a network is a

mechanism that allows packets to be delivered from any node to any

other node. The network is represented as a weighted undirected

graph, and each node can forward incoming data by using local

information stored at the node, called a routing table, and the (short)

packet’s header. The routing scheme has two main phases: in the

preprocessing phase, each node is assigned a routing table and a

short label; in the routing phase, when a node receives a packet, it

should make a local decision, based on its own routing table and

the packet’s header (which may contain the label of the destination,

or a part of it), of where to send the packet. The stretch of a routing

scheme is the worst-case ratio between the length of a path on

which a packet is routed to the shortest possible path.

Compact routing schemes were extensively studied [1, 10, 11,

34, 38, 41, 67, 72], starting with Peleg and Upfal [67]. Using �̃� (𝑛
1

𝑘 )
table size, Awerbuch et al. [10] obtained stretch 𝑂 (𝑘2

9
𝑘 ), which

was improved later to 𝑂 (𝑘2) by Awerbuch and Peleg [11]. In their

celebrated compact routing scheme, Thorup and Zwick [72] ob-

tained stretch 4𝑘 − 5 while using 𝑂 (𝑘 · 𝑛1/𝑘 ) size tables and labels

of size 𝑂 (𝑘 log𝑛). 4 The stretch was improved to roughly 3.68𝑘 by

Chechik [34], using a scheme similar to [72] (while keeping all other

parameters intact). Recently, Abraham et al. [1] devise a compact

routing scheme (using Ramsey spanning trees) with labels of size

𝑂 (log𝑛), tables of size 𝑂 (𝑘 · 𝑛1/𝑘 ), and stretch 𝑂 (𝑘 log log𝑛).
In all previous works, the guarantees on the table size are worst

case. That is, the table size of every node in the network is bounded

by a certain parameter. Here our guarantee is only in expectation.

Note that such an expected guarantee makes a lot of sense for a

central planner constructing a routing scheme for a network where

the goal is to minimize the total amount of resources rather than the

maximal amount of resources in a single spot. Even though previous

works analyzed worst-case guarantees, if one tries to analyze their

expected bounds per vertex, the guarantees will not be improved.

Our contribution is the following:

Theorem 1.7 (Compact routing scheme). Given a weighted

graph 𝐺 = (𝑉 , 𝐸,𝑤) on 𝑛 vertices and integer parameter 𝑘 > 1,

there is a compact routing scheme with stretch𝑂 (𝑘 log log𝑛) that has
4
Unless stated otherwise, we measure space in machine words, each word is Θ(log𝑛)
bits.

Table 1: The table compares various routing schemes for 𝑛-
vertex graphs. In rows 1-4, we compare different schemes
in their full generality, here 𝑘 is an integer parameter. In
rows 5,6,8,10, we fix 𝑘 = log𝑛, while in rows 7 and 9, we fix
𝑘 =

log𝑛

log log𝑛
. Note that our result in line 9 is superior to all

previous results: it has reduced label size compared to lines
5-6, reduced table size compared to line 7, and reduced stretch
compared to line 8. Our result in line 10 is the first to obtain
a constant table size.
The sizes of the table and label are measured in words, each
word is 𝑂 (log𝑛) bits. The header size is asymptotically equal
to the label size in all the compared routing schemes. The
main caveat is that, while in all previous results the table
size is analyzed w.r.t. a worst-case guarantee, we only provide
bounds in expectation (marked by (*)). The label size (as well
as the stretch) is a worst-case guarantee in our work as well.

Routing s. Stretch Label Table
1. [72] 4𝑘 − 5 𝑂 (𝑘 log𝑛) 𝑂 (𝑘𝑛1/𝑘 )
2. [34] 3.68𝑘 𝑂 (𝑘 log𝑛) 𝑂 (𝑘𝑛1/𝑘 )
3. [1] 𝑂 (𝑘 log log𝑛) 𝑂 (log𝑛) 𝑂 (𝑘𝑛1/𝑘 )
4. Theorem 1.7 𝑂 (𝑘 log log𝑛) 𝑂 (log𝑛) 𝑂 (𝑛1/𝑘 ) (∗)

5. [72] 𝑂 (log𝑛) 𝑂 (log
2 𝑛) 𝑂 (log𝑛)

6. [34] 𝑂 (log𝑛) 𝑂 (log
2 𝑛) 𝑂 (log𝑛)

7. [1] 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log
2 𝑛)

8. [1] 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)
9. Theorem 1.7 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) (∗)
10. Theorem 1.7 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑶 (1) (∗)

(worst-case) labels (and headers) of size 𝑂 (log𝑛), and the expected
size of the routing table of each vertex is 𝑂 (𝑛1/𝑘 ).

See Table 1 for comparison of our and previous results.Wemainly

focus on the very compact regime where all the parameters are at

most poly-logarithmic. A key result in [72] is a stretch 1 routing

scheme for the special case of a tree, where a routing table has

constant size, and logarithmic label size. All the previous works are

based on constructing a collection of trees. Specifically, in [34, 72],

there are 𝑛 trees, where each vertex belongs to 𝑂 (log𝑛) trees, and
for each pair of nodes, there is a tree that guarantees a small stretch.

Routing is then done in that tree. This is the reason for their large

label size of log
2 𝑛 (as a label consists of log𝑛 labels in different

trees). [1] constructs log𝑛 (Ramsey spanning) trees in total, where

each vertex 𝑣 has a home tree 𝑇𝑣 , such that 𝑣 enjoys a small stretch

w.r.t. any other vertex in 𝑇𝑣 . The label then consists of the name

of 𝑇𝑣 and the label of 𝑣 in 𝑇𝑣 . However, the routing table is still

somewhat large as one needs to store the routing information in

log𝑛 different trees.

In contrast, our construction is based on the spanning clan em-

bedding (𝑓 , 𝜒) of Theorem 1.3 into a single tree 𝑇 , where the clan

of each vertex consists of 𝑂 (1) copies (in expectation). The label of

each vertex 𝑣 is simply the label of 𝜒 (𝑣) in𝑇 . The routing table of 𝑣
contains the routing tables of all the corresponding copies in 𝑓 (𝑣).
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1.1.2 Metric Baker Problems inMinor-free Graphs. Baker [13] intro-
duced a “layering” technique in order to construct efficient polyno-

mial approximation schemes (EPTAS)
5
for many “local” problems

in planar graphs such as minimum-measure dominating set and

maximum-measure independent set. The key observation is that

planar graphs have the “bounded local treewidth” property. Baker

showed that for some problems solvable on bounded treewidth

graphs, one can construct efficient approximation schemes for

graphs possessing the bounded local treewidth property. This ap-

proach was generalized by Demaine et al. [40] to minor-free graphs.

Eisenstat et al. [42] proposed metric generalizations of Baker

problems: minimum measure 𝜌-dominating set, and maximum mea-

sure 𝜌-independent set. Given a metric space (𝑋,𝑑𝑋 ), a subset 𝑆 ⊆ 𝑋
of points is a 𝜌-independent set if for every 𝑥,𝑦 ∈ 𝑆 , 𝑑𝑋 (𝑥,𝑦) > 𝜌 .

Similarly, a 𝜌-dominating set is a subset 𝑆 ⊆ 𝑋 such that for every

𝑥 ∈ 𝑋 , there exists 𝑦 ∈ 𝑆 , such that 𝑑𝑋 (𝑥,𝑦) ≤ 𝜌 . Given a measure

𝜇 : 𝑋 → R+, the goal of the metric 𝜌-dominating (resp. indepen-

dent) set problem is to find a 𝜌-dominating (resp. independent) set

of minimum (resp. maximum) measure. It is often the case that

metric Baker problems are much easier under the uniform measure.

Sometimes, in addition, we are given a set of terminalsK ⊆ 𝑋 , and
required only that the terminals will be dominated (∀𝑥 ∈ K, ∃𝑦 ∈ 𝑆
s.t. 𝑑𝑋 (𝑥,𝑦) ≥ 𝜌). Note that the metric generalization of Becker

problems in structured graphs (e.g. planar) is considerably harder

than the non-metric problems. This is because the graph describing

dominance/independence relations no longer posses the original

structure (e.g. planarity).

An approximation scheme for the 𝜌-dominating (resp. indepen-

dent) set problem returns a 𝜌-dominating (resp. independent) set 𝑆

such that for every 𝜌-dominating (resp. independent) set 𝑆 ′ it holds
that 𝜇 (𝑆) ≤ (1 + 𝜖)𝜇 (𝑆 ′) (resp. 𝜇 (𝑆) ≥ (1 − 𝜖)𝜇 (𝑆 ′)). A bicriteria

approximation scheme for the 𝜌-dominating (resp. independent) set

problem returns a (1+𝜖)𝜌-dominating (resp. (1−𝜖)𝜌-independent)
set 𝑆 such that for every 𝜌-dominating (resp. independent) set 𝑆 ′ it
holds that 𝜇 (𝑆) ≤ (1 + 𝜖)𝜇 (𝑆 ′) (resp. 𝜇 (𝑆) ≥ (1 − 𝜖)𝜇 (𝑆 ′)).

For unweighted graphs with treewidth tw, Borradaile and Le

[26] provided an exact algorithm for the 𝜌-dominating set prob-

lem with 𝑂 ((2𝜌 + 1)tw+1𝑛) running time (see also [39]). For gen-

eral treewidth tw graphs, using dynamic programming technique,

Katsikarelis et al. [57] designed a fixed parameter tractable (FPT)

approximation algorithm for the metric 𝜌-dominating set prob-

lem with (tw/𝜖)𝑂 (tw) · poly(𝑛) runtime that returns a (1 + 𝜖)𝜌-
dominating set 𝑆 , such that for every 𝜌-dominating set 𝑆 ′ it holds
that 𝜇 (𝑆) ≤ 𝜇 (𝑆 ′). A similar result was also obtained for the metric

𝜌-independent set problem [58]. In particular, for the very basic

case of bounded treewidth graphs, no true approximation scheme

(even with quasi-polynomial time) is known for these problems.

Additional evidence was provided by Marx and Pilipczuk [64] (see

also [51]), who showed that the existence of EPTAS
5
for either

𝜌-dominating/independent set problem in planar graphs would

refute the exponential-time hypothesis (ETH). Given this evidence,

it is natural to settle for bicriteria approximation.

5
A polynomial time approximation scheme (PTAS) is an algorithm that for any fixed

𝜖 ∈ (0, 1) , provides a (1 + 𝜖)-approximation in polynomial time. A PTAS is an

efficient polynomial time approximation scheme (EPTAS) if running time is of the

form 𝑛𝑂 (1) · 𝑓 (𝜖) for some function 𝑓 (.) depending on 𝜖 only. A quasi-polynomial

time approximation scheme (QPTAS) has running time 2
·polylog(𝑛)

for every fixed 𝜖 .

For unweighted planar graphs and constant 𝜌 , there are lin-

ear time approximation schemes (not bicriteria) for the metric 𝜌-

independent/dominating set problems [39, 45]. In weighted planar

graphs, under the uniform measure, Marx and Pilipczuk [64] gave

exact 𝑛𝑂 (
√
𝑘)

time solution to both metric 𝜌-dominating/isolated

set problems, provided that the solution is guaranteed to be of size

at most 𝑘 . Using their embedding of planar graphs into 𝜖−𝑂 (1)
log𝑛-

treewidth graphs with additive distortion 𝜖𝐷 , Eisenstat et al. [42]

provided a bicriteria PTAS
5
for both metric 𝜌-independent set and

𝜌-dominating set problems in planar graphs. Later, by constructing

an improved embedding into 𝜖−𝑂 (1)
-treewidth graphs, Fox-Epstein

et al. [51] obtained a bicriteria EPTAS.
5

Finally, we turn to the most challenging case of minor-free

graphs. For the restricted uniform measure case, using local search

(similarly to [37]), we construct PTAS for both metric 𝜌-dominating

and 𝜌-independent set problems. (See the full version for details).

However, the local search approach seems to be hopeless for general

measures. Alternately, one can try the metric embedding approach

(for which bicriteria approximation is unavoidable). Unfortunately,

unlike the classic embeddings in [42, 51], Cohen-Addad et al. [36]

provided a stochastic embedding with an expected distortion guaran-

tee. Such a stochastic guarantee is not strong enough to construct

approximation schemes for the metric 𝜌-independent/dominating

set problems. Using our clan and Ramsey-type embeddings, we are

able to provide the first bicriteria QPTAS
5
for these problems. See

Table 2 for a summary of previous and current results.

Theorem 1.8 (Metric 𝜌-independent set). There is a bicriteria

quasi-polynomial time approximation scheme (QPTAS) for the metric

𝜌-independent set problem in 𝐾𝑟 -minor-free graphs.

Specifically, given a weighted 𝑛-vertex 𝐾𝑟 -minor-free graph 𝐺 =

(𝑉 , 𝐸,𝑤), measure 𝜇 : 𝑉 → R+ and parameters 𝜖 ∈ (0, 1

4
), 𝜌 > 0, in

2
�̃�𝑟 ( log

2 𝑛

𝜖2
)
time, one can find a (1 − 𝜖)𝜌-independent set 𝑆 ⊆ 𝑉 such

that for every 𝜌-independent set 𝑆 , 𝜇 (𝑆) ≥ (1 − 𝜖)𝜇 (𝑆).

Theorem 1.9 (Metric 𝜌-dominating set). There is a bicriteria

quasi-polynomial time approximation scheme (QPTAS) for the metric

𝜌-dominating set problem in 𝐾𝑟 -minor-free graphs.

Specifically, given a weighted 𝑛-vertex 𝐾𝑟 -minor-free graph 𝐺 =

(𝑉 , 𝐸,𝑤), measure 𝜇 : 𝑉 → R+, a subset of terminals K ⊆ 𝑉 ,

and parameters 𝜖 ∈ (0, 1

4
), 𝜌 > 0, in 2

�̃�𝑟 ( log
2 𝑛

𝜖2
)
time, one can find a

(1+𝜖)𝜌-dominating set 𝑆 ⊆ 𝑉 forK such that for every 𝜌-dominating

set 𝑆 of K , 𝜇 (𝑆) ≤ (1 + 𝜖)𝜇 (𝑆).

1.2 Related Work
Path-distortion A closely related notion to clan embeddings is

multi-embedding studied by Bartal andMendel [23]. Amulti-embed-

ding is a dominating one-to-many embedding. The distortion guar-

antee, however, is very different. We say that a multi-embedding

𝑓 : 𝑋 → 2
𝑌
between metric spaces (𝑋,𝑑𝑋 ), (𝑌,𝑑𝑌 ) has path distor-

tion 𝑡 , if for every “path” in𝑋 , i.e., a sequence of points 𝑥0, 𝑥1, . . . , 𝑥𝑞 ,

there are copies 𝑥 ′
𝑖

∈ 𝑓 (𝑥𝑖 ) such that

∑𝑞−1

𝑖=0
𝑑𝑌 (𝑥 ′𝑖 , 𝑥

′
𝑖+1

) ≤ 𝑡 ·∑𝑞−1

𝑖=0
𝑑𝑋 (𝑥𝑖 , 𝑥𝑖+1). For 𝑛 point metric space (𝑋,𝑑) with aspect ratio
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Table 2: The table compares different approximation schemes for metric Becker problems on weighted graphs. All compared
results apply to both metric 𝜌-dominating/independent set problems. All the results (other than in line 5) apply to the general
measure case.

Reference Family Result Technique
1. [64] planar No EPTAS under ETH

2. [57, 58] treewidth FPT with approx (1 + 𝜖)𝜌 Dynamic programming

3. [42] planar Bicriteria PTAS Deterministic embedding

4. [51] planar Bicriteria EPTAS Deterministic embedding

5. Theorems 16&17 in the full version minor-free PTAS (uniform measure) Local search

6. Theorems 1.8&1.9 minor-free Bicriteria QPTAS Clan/Ramsey type embedding

Φ 6
, and parameter 𝑘 ≥ 1, Bartal and Mendel [23] constructed a

multi-embedding into ultrametric with𝑂 (𝑛1+ 1

𝑘 ) vertices and distor-
tion𝑂 (𝑘 ·min{log𝑛 · log log𝑛, logΦ · log logΦ}). Formally, path dis-

tortion andmultiplicative distortion of clan embedding are incompa-

rable, as clan embedding guarantees small distortion with respect to

a single chief vertex (which is crucial to our applications), while the

multi-embedding [23] distortion guarantee is w.r.t. arbitrary copies,

but preserve entire “paths”. Interestingly, a small modification to our

clan embedding provides the path distortion guarantee as well! See

the full version for details [49]. Specifically, we obtain embedding

into ultrametric with𝑂 (𝑛1+ 1

𝑘 ) (resp. (1+𝜖)𝑛) vertices and distortion
𝑂 (𝑘 ·min{log𝑛, logΦ}) (resp.𝑂 ( log𝑛

𝜖 ·min{log𝑛, logΦ})), shaving
a log log factor compared with [23]. In a private communication,

Bartal told us that he obtained the exact same path distortion guar-

antees more than a decade ago; Bartal’s manuscript is made public

recently [18].

In a concurrent paper, Haeupler et al. [53] studied a closely

related notion of tree embeddings with copies. They construct a

one-to-many embedding of a graph 𝐺 into a tree 𝑇 where every

vertex has at most 𝑂 (log𝑛) copies, and such that every connect

subgraph 𝐻 of 𝐺 has a connected copy 𝐻 ′
in 𝑇 , of weight at most

𝑂 (log
2 𝑛) · 𝑤 (𝐻 ). Using the path distortion gurantee in our em-

bedding (or [18]), one will obtain an embedding such that every

connect subgraph𝐻 of𝐺 has a connected copy𝐻 ′
in𝑇 , of weight at

most 𝑂 (log𝑛) ·𝑤 (𝐻 ), however the bound on the maximal number

of copies will be only polynomial.

Tree covers. The constructions of Ramsey trees are asymptoti-

cally tight [19]. Furthermore, as was shown by Bartal et al. [20] that

they cannot be substantially improved even for planar graphs with

a constant doubling dimension.
7
Therefore [20] suggested study-

ing a weaker gurantee provided by tree covers. Here the goal is to

construct a small collection of dominating embeddings into trees

such that every pair of vertices has a small distortion in some tree

in the collection. For 𝑛-vertex minor-free graph [20] constructed

1 + 𝜖 tree covers of size 𝑂𝑟 ( log
2 𝑛

𝜖2
) (or a 𝑂 (1)-tree cover 𝑂 (1) size).

For metrics with doubling dimension 𝑑 , [20] constructed 1 + 𝜖-tree
covers of size ( 1

𝜖 )
𝑂 (𝑑)

. Recently, the authors [50] showed that for

doubling metrics, we can replace the trees by ultrametrics.

6
The aspect ratio of a metric space (𝑋,𝑑) is the ratio between the maximal and

minimal distances

max𝑥,𝑦 𝑑 (𝑥,𝑦)
min𝑥≠𝑦 𝑑 (𝑥,𝑦) .

7
Specifically, for every 𝛼 > 0, [20] constructed planar graph with constant doubling di-

mension, such that for every tree embedding, the subset of vertices enjoying distortion

≤ 𝛼 is of size at most 𝑛
1−Ω ( 1

𝛼 log𝛼
)
, which is almost as bad as general graphs.

Minor free graphs. Different types of embedding were stud-

ied for minor-free graphs. 𝐾𝑟 -minor-free graphs embed into ℓ𝑝

space with multiplicative distortion𝑂𝑟 (log
min{ 1

2
, 1

𝑝
}
𝑛) [2, 3, 60, 69].

In particular, they embed into ℓ∞ of dimension 𝑂𝑟 (log
2 𝑛) with a

constant multiplicative distortion. They also admit spanners with

multiplicative distortion 1 + 𝜖 and �̃�𝑟 (𝜖−3) lightness [27]. On the

other hand, there are other graph families that embed well into

bounded treewidth graphs. Talwar [71] showed that graphs with

doubling dimension 𝑑 and aspect ratio Φ 6
, stochastically embed

into graphs with treewidth 𝜖−𝑂 (𝑑 log𝑑) ·log
𝑑 Φwith expected distor-

tion 1 + 𝜖 . Similar embeddings are known for graphs with highway

dimension ℎ [47] (into treewidth (logΦ)−𝑂 (log
2 ℎ
𝜖
)
graphs), and

graphs with correlation dimension 𝑘 [33] (into treewidth �̃�𝑘,𝜖 (
√
𝑛)

graphs).

1.3 Organization
In Section 3, we review basic notation in this paper. The construc-

tion of clan embedding into ultrametric is given in Section 4, and

the lower bound for clan embeddings into trees is given in Section 5.

Missing details of claimed results can be found in the full version

of the paper [49].

2 PAPER OVERVIEW
Clan embedding into ultrametric. The main task is to prove a “dis-

tributional” version of Theorem 1.1. Specifically, given a parameter

𝑘 , and a measure 𝜇 : 𝑋 → R≥1, we construct a clan embedding

with distortion 16𝑘 such that
∑
𝑥 ∈𝑋 𝜇 (𝑥) · |𝑓 (𝑥) | ≤ 𝜇 (𝑋 )1+ 1

𝑘 , where

𝜇 (𝑋 ) =
∑
𝑥 ∈𝑋 𝜇 (𝑥) (Lemma 4.1). We show that the distributioal

version implies Theorem 1.1 by using the minimax theorem.

The algorithm to construct the distributional version is a de-

terministic recursive ball growing algorithm, which is somewhat

similar to previous deterministic algorithms constructing Ramsey

trees [1, 17]. Let 𝐷 be the diameter of the metric space. We grow

a ball 𝐵(𝑣, 𝑅) around a point 𝑣 and partition the space into two

clusters: the interior 𝐵(𝑣, 𝑅 + 𝐷
16𝑘

) and exterior 𝑋 \ 𝐵(𝑣, 𝑅 − 𝐷
16𝑘

)
of the ball, while points at distance

𝐷
16𝑘

from the boundary of the

ball belong to both clusters. We then recursively create a clan em-

bedding into ultrametrics for each of the two clusters. These two

embeddings are later combined into a single ultrametric where the

root has label 𝐷 . The 16𝑘 distortion guarantee follows from the

wide “belt” around the boundary of the ball belonging to both clus-

ters. Note that the images of vertices in this “belt” contain copies in

the clan embeddings of both clusters, while “non-belt” points have
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copies in a single embedding only. However, the two clusters have

cardinality smaller than |𝑋 |. The key is to carve the partition while

guaranteeing that the relative measure of points belonging to both

clusters will be small compared to the reduction in cardinality.

Spanning clan embedding into trees. In Theorem 1.3, the spanning

version, we try to imitate the approach of Theorem 1.1. However,

we cannot simply carve balls and continue recursively. The reason

is that the diameter of a cluster could grow unboundedly after

deleting some vertices. In particular, there is no clear upper bound

on the distance between separated points.

To imitate the ball growing approach nonetheless, we use the

petal-decomposition framework that was previously applied to

create stochastic embedding into spanning trees [4], and Ramsey

spanning trees [1]. The petal decomposition framework enables

one to iteratively construct a spanning tree for a given graph. In

each level, the current cluster is partitioned into smaller diameter

pieces (called petals), which have properties resembling balls. The

algorithm continues recursively on the petals. Later, the petals are

connected back to create a spanning tree. The key property is that

while creating a petal, we have a certain degree of freedom to chose

its “radius”, which enables us to use the ball growing approach from

above. Crucially, the framework guarantees that for every choice of

radii (within the sepecified limits), the diameter of the resulting tree

will be only constant times larger than that of the original graph.

However, the petal decomposition framework does not provide us

with the freedom to choose the center of the petal. This makes the

task of controlling the number of copies more subtle.

Lower bound for clan embedding into a tree. We provide here a

proof sketch for the first assertion in Theorem 1.2. We begin by

constructing an 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸) with (1 + 𝜖)𝑛 edges and

girth 𝑔 = Ω( log𝑛
𝜖 ); the girth is the length of the shortest cycle. Con-

sider an arbitrary clan embedding of𝐺 into a tree𝑇 with distortion

𝑔
𝑐 = 𝑂 ( log𝑛

𝜖 ) (for some constant 𝑐) and 𝜅 copies overall. We create a

new graph 𝐻 by merging all the copies of each vertex into a single

vertex. There is a naturally defined classic embedding from 𝐺 to 𝐻

with distortion ≤ 𝑔
𝑐 . The Euler characteristic of the graph 𝐺 equals

𝜒 (𝐺) = |𝐸 | − |𝑉 | + 1 = 𝜖𝑛 + 1, while the Euler characteristic of 𝐻 is

at most 𝜒 (𝐻 ) ≤ 𝜅 − 𝑛. However, Rabinovich and Raz [68] showed

that, if an embedding from a girth-𝑔 graph 𝐺 has distortion ≤ 𝑔
𝑐 ,

the host graph must have the Euler characteristic at least as large

as that of 𝐺 . Thus, we conclude that 𝜅 ≥ (1 + 𝜖)𝑛 + 1 as required.

Ramsey type embedding for minor-free graphs. The structure the-

orem of Robertson and Seymour [70] stated that every minor-free

graph can be decomposed into a collection of graphs embedded

on the surface of constant genus (with some vortices and apices),

glued together into a tree structure by taking clique-sums. The

stochastic embedding of minor free graphs into a distribution over

bounded treewidth graphs by Cohen-Addad et al. [36] was con-

structed according to the layers of the structure theorem. First, they

constructed an embedding for a planar graph with a single vortex.

Then, they generalized it to planar graphs with multiple vortices,

subsequently to graphs embedded on the surface of constant genus

with multiple vortices, and to surface embeddable graphs with mul-

tiple vortices and apices. Finally, they incorporated cliques-sums

and generalized to minor-free graphs. Most crucially, for this paper,

the only step requiring randomness was the incorporation of apices.

Specifically, [36] constructed a deterministic embedding for graphs

embedded on the surface of constant genus with multiple vortices.

This is the starting point of our embeddings.

Our first step is to incorporate apices, however, instead of guar-

anteeing that the distance of each pair is distorted by 𝜖𝐷 in expec-

tation, we will show that each vertex with probability 1−𝛿 enjoys a
small distortion w.r.t. any other vertex. We begin by deleting all the

apices Ψ and obtaining a surface embeddable graph with multiple

vortices 𝐺 ′ = 𝐺 [𝑉 \ Ψ]. However, the diameter of the resulting

graph is essentially unbounded. Pick an arbitrary vertex 𝑟 , and

partition 𝐺 ′
into layers of width 𝑂 (𝐷

𝛿
) w.r.t. distances from 𝑟 with

a random shift
8
. It follows that every vertex 𝑣 is 2𝐷-padded (that

is, the ball 𝐵(𝑣, 2𝐷) is fully contained in a single layer) with proba-

bility 1−𝛿 . The set𝑀 of satisfied vertices defined to be the set of all

𝐷-padded vertices. We then use the deterministic embedding from

[36] on every layer with distortion parameter 𝜖 ′ = Θ(𝜖𝛿) to incur

additive distortion 𝜖𝐷 . Finally, we combine all these embeddings

together into a single embedding, which also contains the apices.

The next step is to incorporate clique-sums. This is done re-

cursively w.r.t. the clique-sum decomposition tree T. In each step,

we pick a central piece �̃� ∈ T such that T \ �̃� breaks into con-

nected components T1,T2, . . . , where each T𝑖 contains at most

|T|/2 pieces. We construct a Ramsey-type embedding for �̃� using

the lemma above and obtain a set �̃� of satisfied vertices. Recur-

sively, we construct a Ramsey-type embedding for each T𝑖 and
obtain a set 𝑀𝑖 of satisfied vertices. We ensure that all these em-

beddings are clique-preserving. Thus even though eventually we

will obtain a one-to-one embedding, during the process, we keep

them one-to-many and clique-preserving. This provides us with a

natural way to combine all the embeddings of �̃�,T1,T2, . . . into a

single embedding into a graph of bounded treewidth (by identifying

vertices of respective clique copies). All the vertices in �̃� will be

satisfied. A vertex 𝑣 ∈ T𝑖 will be satisfied if 𝑣 ∈ 𝑀𝑖 and all the

vertices in the clique 𝑄𝑖 , used in the clique sum of �̃� with T𝑖 , are

satisfied 𝑄𝑖 ⊆ �̃� . Analyzing the entire process, we show that each

vertex is satisfied with probability at least (1−𝛿)log𝑛
. The theorem

follows by setting the parameter 𝛿 ′ = Θ( 𝛿
log𝑛

).

Clan embedding for minor-free graphs. The construction here

follows similar lines to our Ramsey-type embedding. However, we

cannot simply “give-up” on vertices, as we required to provide a

worst-case distortion guarantee on all vertex pairs. Similarly to

the Ramsey-type case, we build on the deterministic embedding of

surface embeddable graphs with vortices from [36], and generalize

it to a clan embedding of graphs including the apices. However,

there is one crucial difference in creating the “layering” (with the

random shift). In the Ramsey-type embedding, vertices near the

boundary between two layers simply failed and did not join 𝑀 .

Here, instead, the layers will somewhat overlap such that copies

of vertices near boundary areas will be split into two unrelated

8
Alternatively, one could use here a strong padded decomposition [48] (as in [36])

into clusters of diameter𝑂𝑟 ( 𝐷𝛿 ) such that each radius-𝐷 ball is fully contained in a

single cluster with probability 1 − 𝛿 . However, this approach will not work for our

clan embedding, as there is no bound on the number of copies we will need for failed

vertices. We use the layering approach for the Theorem 1.4 as well to keep the proofs

of Theorems 1.4 and 1.6 similar.
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sets. In particular, cliques that lie near boundary areas will have

two separated clique copies w.r.t. each corresponding layer (at most

two). Even though that actually each vertex will have an essentially

unbounded number of copies (due to the clique-preservation re-

quirement), the copies of each vertex will be divided to either one

or two sets, such that in the final embedding, it will be enough to

pick an arbitrary single copy from each set. The copies of a vertex

will split into two sets only if it is in the area of the boundary, the

probability of which is bounded by 𝛿 .

The generalization to clique-sums also follows similar lines to

the Ramsey-type embedding. We create a clan embedding for �̃�

into treewidth graph �̃� as above, and recursively clan embeddings

𝐻1, 𝐻2, . . . for T1,T2, . . . . For each T𝑖 , we will make the vertices

of the clique 𝑄𝑖 , used for the clique-sum between �̃� and T𝑖 , into
apices, thereby ensuring that 𝐻𝑖 will succeed on 𝑄𝑖 . In particular,

every vertex 𝑣 ∈ 𝑄𝑖 will have a single copy in 𝐻𝑖 . When combining

𝐻𝑖 with �̃� , there are two cases. If the embedding �̃� was successful

w.r.t. 𝑄𝑖 we will simply identify between the two clique copies and

done. Otherwise, �̃� will contain two vertex-disjoint clique copies

�̃�1

𝑖
, �̃�2

𝑖
of 𝑄𝑖 . We will create two disjoint copies of the embedding

𝐻𝑖 : 𝐻
1

𝑖
, 𝐻2

𝑖
, and identify the two copies of𝑄𝑖 in 𝐻

1

𝑖
, 𝐻2

𝑖
with �̃�1

𝑖
, �̃�2

𝑖
,

respectively. It follows that for a vertex 𝑣 ∈ T𝑖 , with probability at

least 1 − 𝛿 , the number of copies it will have is the same as in 𝐻𝑖 ,

while with probability at most 𝛿 it will be doubled. Analyzing the

entire process (and picking a single copy from each relevant set

as above), we show that each vertex is expected to have at most

(1 + 𝛿)log𝑛
copies. The theorem follows by using the parameter

𝛿 ′ = Θ( 𝛿
log𝑛

).

3 PRELIMINARIES
�̃� notation hides poly-logarithmic factors, that is �̃� (𝑔) = 𝑂 (𝑔) ·
polylog(𝑔), while𝑂𝑟 notation hides factors in 𝑟 , e.g.𝑂𝑟 (𝑚) = 𝑂 (𝑚)·
𝑓 (𝑟 ) for some function 𝑓 of 𝑟 . All logarithms are at base 2 (unless

specified otherwise).

We consider connected undirected graphs 𝐺 = (𝑉 , 𝐸) with edge

weights𝑤𝐺 : 𝐸 → R≥0. A graph is called unweighted if all its edges

have unit weight. Additionally, we denote 𝐺 ’s vertex set and edge

set by 𝑉 (𝐺) and 𝐸 (𝐺), respectively. Often, we will abuse notation
and write 𝐺 instead of 𝑉 (𝐺). 𝑑𝐺 denotes the shortest path metric

in𝐺 , i.e., 𝑑𝐺 (𝑢, 𝑣) is the shortest distance between 𝑢 to 𝑣 in𝐺 . Note

that every metric space can be represented as the shortest path

metric of a weighted complete graph. We will use the notions of

metric spaces, and weighted graphs interchangeably. When the

graph is clear from the context, we might use 𝑤 to refer to 𝑤𝐺 ,

and 𝑑 to refer to 𝑑𝐺 . 𝐺 [𝑆] denotes the induced subgraph by 𝑆 . The

diameter of 𝑆 , denoted by diam(𝑆), is max𝑢,𝑣∈𝑆 𝑑𝐺 [𝑆 ] (𝑢, 𝑣). 9
An ultrametric (𝑋,𝑑) is a metric space satisfying a strong form

of the triangle inequality, that is, for all 𝑥,𝑦, 𝑧 ∈ 𝑋 , 𝑑 (𝑥, 𝑧) ≤
max {𝑑 (𝑥,𝑦), 𝑑 (𝑦, 𝑧)}. The following definition is known to be an

equivalent one (see [22]).

Definition 3.1. An ultrametric is a metric space (𝑋,𝑑) whose
elements are the leaves of a rooted labeled tree 𝑇 . Each 𝑧 ∈ 𝑇 is

associated with a label ℓ (𝑧) ≥ 0 such that if 𝑥 ∈ 𝑇 is a descendant

9
This is often called strong diameter. A related notion is the weak diameter of a cluster

𝑆 , defined to be max𝑢,𝑣∈𝑆 𝑑𝐺 (𝑢, 𝑣) . Note that for a metric space, weak and strong

diameters are equivalent.

of 𝑧 then ℓ (𝑥) ≤ ℓ (𝑧) and ℓ (𝑥) = 0 iff 𝑥 is a leaf. The distance

between leaves 𝑥,𝑦 ∈ 𝑋 is defined as 𝑑𝑇 (𝑥,𝑦) = ℓ (lca (𝑥,𝑦)) where
lca (𝑥,𝑦) is the least common ancestor of 𝑥 and 𝑦 in 𝑇 .

Metric Embeddings. Classically, a metric embedding is defined

as a function 𝑓 : 𝑋 → 𝑌 between the points of two metric spaces

(𝑋,𝑑𝑋 ) and (𝑌,𝑑𝑌 ). A metric embedding 𝑓 is said to be dominat-

ing if for every pair of points 𝑥,𝑦 ∈ 𝑋 , it holds that 𝑑𝑋 (𝑥,𝑦) ≤
𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑦)). The distortion of a dominating embedding 𝑓 is

max𝑥≠𝑦∈𝑋
𝑑𝑌 (𝑓 (𝑥),𝑓 (𝑦))

𝑑𝑋 (𝑥,𝑦) . Here we will study a more permitting

generalization of metric embedding introduced by Cohen-Addad et

al. [36], which is called one-to-many embedding .

Definition 3.2 (One-to-many embedding). A one-to-many embed-

ding is a function 𝑓 : 𝑋 → 2
𝑌
from the points of a metric space

(𝑋,𝑑𝑋 ) into non-empty subsets of points of a metric space (𝑌,𝑑𝑌 ),
where the subsets {𝑓 (𝑥)}𝑥 ∈𝑋 are disjoint. 𝑓 −1 (𝑥 ′) denotes the

unique point 𝑥 ∈ 𝑋 such that 𝑥 ′ ∈ 𝑓 (𝑥). If no such point exists,

𝑓 −1 (𝑥 ′) = ∅. A point 𝑥 ′ ∈ 𝑓 (𝑥) is called a copy of 𝑥 , while 𝑓 (𝑥)
is called the clan of 𝑥 . For a subset 𝐴 ⊆ 𝑋 of vertices, denote

𝑓 (𝐴) = ∪𝑥 ∈𝐴 𝑓 (𝑥).
We say that 𝑓 is dominating if for every pair of points 𝑥,𝑦 ∈ 𝑋 ,

it holds that 𝑑𝑋 (𝑥,𝑦) ≤ min𝑥 ′∈𝑓 (𝑥),𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑥 ′, 𝑦′). We say that

𝑓 has multiplicative distortion 𝑡 , if it is dominating and ∀𝑥,𝑦 ∈ 𝑋 ,
it holds that max𝑥 ′∈𝑓 (𝑥),𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑥 ′, 𝑦′) ≤ 𝑡 · 𝑑𝑋 (𝑥,𝑦). Similarly,

𝑓 has additive distortion 𝜖𝐷 if 𝑓 is dominating and ∀𝑥,𝑦 ∈ 𝑋 ,

max𝑥 ′∈𝑓 (𝑥),𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑥 ′, 𝑦′) ≤ 𝑑𝑋 (𝑥,𝑦) + 𝜖𝐷 .
A stochastic one-to-many embedding is a distribution D over

dominating one-to-many embeddings. We say that a stochastic

one-to-many embedding has expected multiplicative distortion

𝑡 if ∀𝑥,𝑦 ∈ 𝑋 , E[max𝑥 ′∈𝑓 (𝑥),𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑥 ′, 𝑦′)] ≤ 𝑡 · 𝑑𝑋 (𝑢, 𝑣).
Similarly, 𝑓 has expected additive distortion 𝜖𝐷 , if ∀𝑥,𝑦 ∈ 𝑋 ,

E[max𝑥 ′∈𝑓 (𝑥),𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑥 ′, 𝑦′)] ≤ 𝑑𝑋 (𝑥,𝑦) + 𝜖𝐷 .
For a one-to-many embedding 𝑓 between weighted graphs 𝐺 =

(𝑉 , 𝐸,𝑤) and 𝐻 = (𝑉 ′, 𝐸 ′,𝑤 ′), we say that 𝑓 is spanning if 𝑉 ′ =
𝑓 (𝑉 ) (i.e. 𝑓 is “onto”), and for every edge (𝑢, 𝑣) ∈ 𝐸 ′, it holds that(
𝑓 −1 (𝑢), 𝑓 −1 (𝑣)

)
∈ 𝐸 and𝑤 ′(𝑢, 𝑣) = 𝑤

(
𝑓 −1 (𝑢), 𝑓 −1 (𝑣)

)
.

This paper is mainly devoted to the new notion of clan embed-

dings.

Definition 3.3 (Clan embedding). A clan embedding from metric

space (𝑋,𝑑𝑋 ) into a metric space (𝑌,𝑑𝑌 ) is a pair (𝑓 , 𝜒) where 𝑓 :

𝑋 → 2
𝑌
is a dominating one-to-many embedding, and 𝜒 : 𝑋 → 𝑌

is a classic embedding. For every 𝑥 ∈ 𝑋 , we have that 𝜒 (𝑥) ∈ 𝑓 (𝑥);
here 𝑓 (𝑥) called the clan of 𝑥 , while 𝜒 (𝑥) is referred to as the chief

of the clan of 𝑥 (or simply the chief of 𝑥 ).

We say that clan embedding 𝑓 has multiplicative distortion

𝑡 if for every 𝑥,𝑦 ∈ 𝑋 , min𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑦′, 𝜒 (𝑥)) ≤ 𝑡 · 𝑑𝑋 (𝑥,𝑦).
Similarly, 𝑓 has additive distortion 𝜖𝐷 if for every 𝑥,𝑦 ∈ 𝑋 ,

min𝑦′∈𝑓 (𝑦) 𝑑𝑌 (𝑦′, 𝜒 (𝑥)) ≤ 𝑑𝑋 (𝑥,𝑦) + 𝜖𝐷 .
A clan embedding (𝑓 , 𝜒) is said to be spanning if 𝑓 is a spanning

one-to-many embedding.

4 CLAN EMBEDDING INTO AN
ULTRAMETRIC

This section is devoted to proving Theorem 1.1, restated bellow.
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Theorem 1.1 (Clan embedding into ultrametric). Given an

𝑛-point metric space (𝑋,𝑑𝑋 ) and parameter 𝜖 ∈ (0, 1], there is a
uniform distribution D over 𝑂 (𝑛 log𝑛/𝜖2) clan embeddings (𝑓 , 𝜒)
into ulrametrics with multiplicative distortion 𝑂 ( log𝑛

𝜖 ) such that for

every point 𝑥 ∈ 𝑋 , E𝑓 ∼D [|𝑓 (𝑥) |] ≤ 1 + 𝜖 .
In addition, for every 𝑘 ∈ N, there is a uniform distribution D

over 𝑂 (𝑛1+ 2

𝑘 log𝑛) clan embeddings (𝑓 , 𝜒) into ulrametrics with

multiplicative distortion 16𝑘 such that for every point 𝑥 ∈ 𝑋 ,

E𝑓 ∼D [|𝑓 (𝑥) |] = 𝑂 (𝑛
1

𝑘 ).

First, we will prove a “distributional” version of Theorem 1.1.

That is, we will receive a distribution 𝜇 over the points, and de-

terministically construct a single clan embedding (𝑓 , 𝜒) such that∑
𝑥 ∈𝑋 𝜇 (𝑥) |𝑓 (𝑥) | will be bounded. Later, we will use the minimax

theorem to conclude Theorem 1.1. We begin with some definitions:

a measure over a finite set 𝑋 , is simply a function 𝜇 : 𝑋 → R≥0.

The measure of a subset 𝐴 ⊆ 𝑋 , is 𝜇 (𝐴) =
∑
𝑥 ∈𝐴 𝜇 (𝑥). Given

some function 𝑓 : 𝑋 → R, it’s expectation w.r.t. 𝜇 is E𝑥∼𝜇 [𝑓 ] =∑
𝑥 ∈𝑋 𝜇 (𝑥) · 𝑓 (𝑥). We say that 𝜇 is a probability measure if 𝜇 (𝑋 ) = 1.

We say that 𝜇 is a (≥ 1)-measure if for every 𝑥 ∈ 𝑋 , 𝜇 (𝑥) ≥ 1.

Lemma 4.1. Given an𝑛-point metric space (𝑋,𝑑𝑋 ), (≥ 1)-measure

𝜇 : 𝑋 → R≥1, and integer parameter 𝑘 ≥ 1, there is a clan embedding

(𝑓 , 𝜒) into an ultrametric with multiplicative distortion 16𝑘 such that

E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 𝜇 (𝑋 )1+ 1

𝑘 .

Proof. Our proof is inspired by Bartal’s lecture notes [17], who

provided a deterministic construction of Ramsey trees. Specifically,

Claim 1 bellow is due to [17]. Lemma 4.1 could also be proved using

the techniques of Abraham et al. [1]; however the proof based

on [17] we present here is shorter. For a subset 𝐴 ⊆ 𝑋 , denote

by 𝐵𝐴 (𝑥, 𝑟 ) B 𝐵𝑋 (𝑥, 𝑟 ) ∩ 𝐴 the ball in the metric space (𝑋,𝑑𝑋 )
restricted to𝐴. Set 𝜇∗ (𝐴) B max𝑥 ∈𝐴 𝜇

(
𝐵𝐴 (𝑥, diam(𝐴)

4
)
)
. Note that

𝜇∗ is monotone: i.e. 𝐴′ ⊆ 𝐴 implies 𝜇∗ (𝐴′) ≤ 𝜇∗ (𝐴), and ∀𝐴,
𝜇∗ (𝐴) ≤ 𝜇 (𝐴). The following claim is crucial for our construction;

the proof is deferred to the full version [49]. See Figure 2 for an

illustration of the claim.

Claim 1. There is a point 𝑣 ∈ 𝑋 and radius 𝑅 ∈ (0, diam(𝑋 )
2

],
such that the sets 𝑃 = 𝐵𝑋 (𝑣, 𝑅 + 1

8𝑘
· diam(𝑋 )), 𝑄 = 𝐵𝑋 (𝑣, 𝑅), and

𝑄 = 𝑋 \𝑄 satisfy 𝜇 (𝑃) ≤ 𝜇 (𝑄) ·
(
𝜇∗ (𝑋 )
𝜇∗ (𝑃 )

) 1

𝑘
.

The construction of the embedding is by induction on 𝑛, the

number of points in the metric space. We assume that for a met-

ric space 𝑋 with strictly less than 𝑛 points, and arbitrary (≥ 1)-
measure 𝜇, we can construct a clan embedding (𝑓 , 𝜒) with distor-

tion 16𝑘 , such that E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 𝜇 (𝑋 )𝜇∗ (𝑋 )
1

𝑘 ≤ 𝜇 (𝑋 )1+ 1

𝑘 . Find

sets 𝑃,𝑄,𝑄 ⊆ 𝑋 using Claim 1. Let 𝜇𝑃 (resp. 𝜇�̄� ) be the (≥ 1)-
measure 𝜇 restricted to 𝑃 (resp. 𝑄). Using the induction hypothesis,

construct clan embeddings (𝑓𝑃 , 𝜒𝑃 ) for 𝑃 , and (𝑓�̄� , 𝜒�̄� ) for 𝑄 into

ultra-metrics𝑈𝑃 ,𝑈�̄� respectively. Construct a new ultrametric 𝑈

by combining𝑈𝑃 and𝑈�̄� by adding a new root node 𝑟𝑈 with label

diam(𝑋 ) and making roots of𝑈𝑃 and 𝑈�̄� children of 𝑟𝑈 . For every

𝑥 ∈ 𝑋 set 𝑓 (𝑥) = 𝑓𝑃 (𝑥) ∪ 𝑓�̄� (𝑥). If 𝑑𝑋 (𝑣, 𝑥) ≤ 𝑅 + 1

16𝑘
· diam(𝑋 )

set 𝜒 (𝑥) = 𝜒𝑃 (𝑥), otherwise set 𝜒 (𝑥) = 𝜒�̄� (𝑥). This finishes the
construction; see Figure 2 for an illustration.

Next, we argue that the clan embedding (𝑓 , 𝜒) has multiplicative

distortion 16𝑘 . Consider a pair of points 𝑥,𝑦 ∈ 𝑋 . We will show

that min𝑦′∈𝑓 (𝑦) 𝑑𝑈 (𝑦′, 𝜒 (𝑥)) ≤ 16𝑘 · 𝑑𝑋 (𝑥,𝑦). Suppose first that
𝑑𝑋 (𝑣, 𝑥) ≤ 𝑅 + 1

16𝑘
· diam(𝑋 ). If 𝑦 ∈ 𝑃 , then by the induction

hypothesis

min

𝑦′∈𝑓 (𝑦)
𝑑𝑈 (𝑦′, 𝜒 (𝑥)) ≤ min

𝑦′∈𝑓𝑃 (𝑦)
𝑑𝑈𝑃

(𝑦′, 𝜒𝑃 (𝑥))

≤ 16𝑘 · 𝑑𝑃 (𝑥,𝑦) = 16𝑘 · 𝑑𝑋 (𝑥,𝑦) .

Else, 𝑦 ∉ 𝑃 , then 𝑑𝑋 (𝑣,𝑦) > 𝑅 + 1

8𝑘
· diam(𝑋 ). Using the triangle

inequality 𝑑𝑋 (𝑥,𝑦) ≥ 𝑑𝑋 (𝑣,𝑦) − 𝑑𝑋 (𝑣, 𝑥) ≥ diam(𝑋 )
16

. Note that the

label of 𝑟𝑈 is diam(𝑋 ), implying that min𝑦′∈𝑓 (𝑦) 𝑑𝑈 (𝑦′, 𝜒 (𝑥)) ≤
diam(𝑋 ) ≤ 16 · 𝑑𝑋 (𝑥,𝑦). The case where 𝑑𝑋 (𝑣, 𝑥) > 𝑅 + 1

16𝑘
·

diam(𝑋 ) is symmetric (using 𝑄 instead of 𝑃 ).

Next, we bound the weighted number of leafs in the ultrametric.

Note that the process is deterministic and there is no probability

involved. Using the induction hypothesis, it holds that

E𝑥∼𝜇 [|𝑓 (𝑥) |] =
∑︁
𝑥 ∈𝑋

𝜇 (𝑥) ·
(
|𝑓𝑃 (𝑥) | + |𝑓�̄� (𝑥) |

)
= E𝑥∼𝜇𝑃 [|𝑓𝑃 (𝑥) |] + E𝑥∼𝜇�̄� [|𝑓�̄� (𝑥) |]

≤ 𝜇𝑃 (𝑃)𝜇∗𝑃 (𝑃)
1

𝑘 + 𝜇�̄� (𝑄)𝜇∗
�̄�
(𝑄)

1

𝑘

≤ 𝜇 (𝑃)𝜇∗ (𝑃)
1

𝑘 + 𝜇 (𝑄)𝜇∗ (𝑄)
1

𝑘

(∗)
≤ 𝜇 (𝑄)𝜇∗ (𝑋 )

1

𝑘 + 𝜇 (𝑄)𝜇∗ (𝑋 )
1

𝑘 = 𝜇 (𝑋 )𝜇∗ (𝑋 )
1

𝑘 ,

where in the inequality (∗) is due to Claim 1 and the fact that

𝜇∗ (𝑄) ≤ 𝜇∗ (𝑋 ). □
Next, we translate the language of (≥ 1)-measures used in

Lemma 4.1 to probability measures:

Lemma 4.2. Given an𝑛-pointmetric space (𝑋,𝑑𝑋 ), and probability
measure 𝜇 : 𝑋 → R≥0, we can construct the two following clan

embeddings (𝑓 , 𝜒) into ultrametrics:

(1) For every parameter 𝑘 ≥ 1, multiplicative distortion 16𝑘 such

that E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 𝑂 (𝑛
1

𝑘 ).
(2) For every 𝜖 ∈ (0, 1], multiplicative distortion 𝑂 ( log𝑛

𝜖 ) such
that

E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 1 + 𝜖.

Proof. We define the following probability measure �̃�: ∀𝑥 ∈ 𝑋 ,
�̃� (𝑥) = 1

2𝑛 + 1

2
𝜇 (𝑥). Set the following (≥ 1)-measure �̃�≥1 (𝑥) =

2𝑛 · �̃� (𝑥). Note that �̃�≥1 (𝑋 ) = 2𝑛. We execute Lemma 4.1 w.r.t. the

(≥ 1)-measure �̃�≥1, and parameter
1

𝛿
∈ N to be determined later.

It holds that

�̃�≥1 (𝑋 ) · E𝑥∼�̃� [|𝑓 (𝑥) |] = E𝑥∼�̃�≥1

[|𝑓 (𝑥) |]

≤ �̃�≥1 (𝑋 )1+𝛿 = �̃�≥1 (𝑋 ) · (2𝑛)𝛿 ,
implying

(2𝑛)𝛿 ≥ E𝑥∼�̃� [|𝑓 (𝑥) |] =
1

2

· E𝑥∼𝜇 [|𝑓 (𝑥) |] +
∑
𝑥 ∈𝑋 |𝑓 (𝑥) |

2𝑛

≥ 1

2

· E𝑥∼𝜇 [|𝑓 (𝑥) |] +
1

2

.

(1) Set 𝛿 = 1

𝑘
, then we have multiplicative distortion

16

𝛿
= 16𝑘 ,

and E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 2 · (2𝑛)𝛿 = 𝑂 (𝑛
1

𝑘 ).

350



STOC ’21, June 21–25, 2021, Virtual, Italy Arnold Filtser and Hung Le

Q

P

v

Q̄
R + 1

8k ·D
R

xy z

rU

rP rQ̄

χ(x) = x1 x2 χ(y) χ(z)z2z1 z3

UP UQ̄

UX

Figure 2: On the left illustrated the clusters 𝑃,𝑄,𝑄 from Claim 1. On the right we illustrate the clan embedding of the metric
space (𝑋,𝑑𝑋 ) into ultrametric 𝑈 . 𝑟𝑈 is the root of 𝑈 , and its children are the roots of the ultrametrics 𝑈𝑃 ,𝑈�̄� which were
constructed recursively. The point 𝑥 ∈ 𝑃 ∩𝑄 has 𝑓 (𝑥) = 𝑓𝑃 (𝑥) and 𝜒 (𝑥) = 𝜒𝑃 (𝑥) (where |𝑓 (𝑥) | = 2). The point 𝑦 is in 𝑄 \ 𝑃 and
thus 𝑓 (𝑦) = 𝑓�̄� (𝑦) and 𝜒 (𝑦) = 𝜒�̄� (𝑦) (there is a single copy of 𝑦). The point 𝑧 belongs to 𝑃 ∩𝑄 , where 𝑑𝑋 (𝑣, 𝑧) > 𝑅 + 1

16
· diam(𝑋 ),

hence 𝑓 (𝑧) = 𝑓𝑃 (𝑧) ∪ 𝑓�̄� (𝑧) and 𝜒 (𝑧) = 𝜒�̄� (𝑧). Note that |𝑓𝑃 (𝑧) | = |𝑓�̄� (𝑧) | = 2, and hence |𝑓 (𝑧) | = 4.

(2) Choose 𝛿 ∈ (0, 1] such that
1

𝛿
=

⌈
ln(2𝑛)

ln(1+𝜖/2)

⌉
, note that 𝛿 ≤

ln(1+𝜖/2)
ln(2𝑛) . Then we have multiplicative distortion 𝑂 ( 1

𝛿
) =

𝑂 ( log𝑛
𝜖 ), and E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 2 · (2𝑛)𝛿 − 1 ≤ 1 + 𝜖 .

□

Remark 1. Lemma 4.2, note that for the clan embedding (𝑓 , 𝜒) re-
turned by Lemma 4.2 for input𝑘 , it holds that |𝑓 (𝑋 ) | ≤ �̃�≥1 (𝑋 )1+ 1

𝑘 =

(2𝑛)1+ 1

𝑘 . In particular, every 𝑥 ∈ 𝑋 has at most (2𝑛)1+ 1

𝑘 copies. Simi-

larly, for input 𝜖 , |𝑓 (𝑋 ) | ≤ �̃�≥1 (𝑋 )1+𝛿 ≤ (2𝑛)1+ ln(1+𝜖/2)
ln 2𝑛 = 2𝑛 · (1+ 𝜖

2
).

As for every 𝑦 ∈ 𝑋 , 𝑓 (𝑦) ≠ ∅, it follows that for every 𝑥 ∈ 𝑋 , its

number of copies is bounded by |𝑓 (𝑥) | = |𝑓 (𝑋 ) | − |𝑓 (𝑋 \ {𝑥}) | ≤
2𝑛 · (1 + 𝜖

2
) − (𝑛 − 1) = (1 + 𝜖)𝑛 + 1.

Using the minimax theorem, as shown bellow, we show that

there exists a distributionD of clan embeddings with distortion and

expected clan size as specified by Theorem 1.1. Afterwards, using

the multiplicative weights update (MWU) method, we explicitly

construct such distributions efficiently, and with small support size.

Proof of Theorem 1.1 (exsistential agrument). Let 𝜇 be an

arbitrary probability measure over the vertices, and D be any dis-

tribution over clan embeddings (𝑓 , 𝜒) of (𝑋,𝑑𝑋 ) intro trees with

multiplicative distortion 𝑂 ( log𝑛
𝜖 ). Using Lemma 4.2 and the mini-

max theorem we have that

min

D
max

𝜇
E(𝑓 ,𝜒)∼D,𝑥∼𝜇 [|𝑓 (𝑥) |] = max

𝜇
min

(𝑓 ,𝜒)
E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 1 + 𝜖 .

Let D be the distribution from above, denote by 𝜇𝑧 the probability

measure where 𝜇𝑧 (𝑧) = 1 (and 𝜇𝑧 (𝑦) = 0 for 𝑦 ≠ 𝑧). Then for every

𝑥 ∈ 𝑋

E(𝑓 ,𝜒)∼D [|𝑓 (𝑧) |] = E(𝑓 ,𝜒)∼D,𝑥∼𝜇𝑧 [|𝑓 (𝑥) |]
≤ max

𝜇
E(𝑓 ,𝜒)∼D,𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 1 + 𝜖 .

The second claim of Theorem 1.1 could be proven using exactly the

same argument. □

Constructive Proof of Theorem 1.1. Our construction relies on the

multiplicative weights update method (MWU)
10

and the notion of

a (𝜌, 𝛼, 𝛽)-bounded Oracle.

Definition 4.3 ((𝜌, 𝛼, 𝛽)-bounded Oracle). Given a probability

measure 𝜇 over the metric points, a (𝜌, 𝛼, 𝛽)-bounded Oracle re-

turns a clan embedding (𝑓 , 𝜒) with multiplicative distortion 𝛽 such

that:

(1) E𝑥∼𝜇 [|𝑓 (𝑥) |] ≤ 𝛼 .
(2) max𝑥 ∈𝑉 |𝑓 (𝑥) | ≤ 𝜌 .

In Lemma 4.4 below, we show that one can construct a uniform

distribution D by making a polynomial number of oracle calls.

Lemma 4.4. Given a (𝜌, 𝛼, 𝛽)-bounded Oracle, and parameter 𝜖 ∈
(0, 1

2
) one can construct a uniform distribution D over 𝑂 ( 𝜌𝛼 log(𝑛)

𝜖2
)

clan embeddings with multiplicative distortion 𝛽 such that:

For every 𝑥 ∈ 𝑋, E(𝑓 ,𝜒)∼D [|𝑓 (𝑥) |] ≤ 𝛼 + 𝜖

Furthermore, the construction only makes𝑂 ( 𝜌𝛼 log(𝑛)
𝜖2

) queries to the
(𝜌, 𝛼, 𝛽)-bounded Oracle.

Proof. Let O be a (𝜌, 𝛼, 𝛽)-bounded Oracle and O(𝜇) be the
clan embedding returned by the oracle given a probability measure

𝜇. We follow the standard set up of MWU: we have 𝑛 “experts"

where the 𝑖-th expert is associated with the 𝑖-th point 𝑥𝑖 ∈ 𝑋 . The
construction happens in 𝑇 rounds. At the beginning of round 𝑡 ,

we have a weight vector w𝑡 = (𝑤𝑡
1
, . . . ,𝑤𝑡

𝑛)⊺ ; at the first round,
w1 = (1, 1, . . . , 1)⊺ .

The weight vector w𝑡
induces a probability measure

𝜇𝑡 = (
𝑤𝑡

1

𝑊 𝑡
, . . . ,

𝑤𝑡
𝑛

𝑊 𝑡
),

where𝑊 𝑡 =
∑𝑛
𝑖=1

𝑤𝑡
𝑖
. We construct a clan embedding (𝑓 𝑡 , 𝜒𝑡 ) =

O(𝜇𝑡 ) by making an oracle call to O with 𝜇𝑡 as input. Let 𝑔𝑡
𝑖
=

10
For an excellent introduction of the MWU method and its historical account, see the

survey by Arora, Hazan and Kale [8].
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|𝑓 𝑡 (𝑥𝑖 ) |
𝜌 , and g𝑡 = (𝑔𝑡

1
, . . . , 𝑔𝑡𝑛)⊺ be the “penalty” vector for the set

of 𝑛 points (or experts). We then update:

𝑤𝑡+1

𝑖 = (1 + 𝛿)𝑔
𝑡
𝑖𝑤𝑡

𝑖 ∀𝑥𝑖 ∈ 𝑋, (1)

for some small parameter 𝛿 chosen later.

The penalty for each additional copy of each point is proportional

to the number of copies it has in the clan embeddings constructed

in previous steps. This is because in the next round, we will increase

the measure of points with a large number of copies. Hence the

oracle will be “motivated” to reduce the number of copies of these

points in the next outputted clan embedding.

After 𝑇 rounds, we have a collection

D𝑇 = {(𝑓 1, 𝜒1), . . . , (𝑓 𝑇 , 𝜒𝑇 )}

of 𝑇 clan embeddings. The distribution D is constructed by sam-

pling an embedding from D𝑇 uniformly at random. Note that the

distortion bound follows directly from the fact that the distortion

of every clan embedding returned by the oracle is 𝛽 . Our goal is to

show that, by setting 𝑇 = 𝑂 ( 𝜌 log(𝑛)
𝜖2

), we have:

1

𝑇
·

𝑇∑︁
𝑡=1

|𝑓 𝑡 (𝑥𝑖 ) | ≤ 𝛼 + 𝜖 ∀𝑥𝑖 ∈ 𝑉 (2)

To that end, we first observe that:

𝑊 𝑡+1 =

𝑛∑︁
𝑖=1

𝑤𝑡+1

𝑖 =

𝑛∑︁
𝑖=1

(1 + 𝛿)𝑔
𝑡
𝑖𝑤𝑡

𝑖

(∗)
≤

𝑛∑︁
𝑖=1

(1 + 𝛿𝑔𝑡𝑖 )𝑤
𝑡
𝑖

= (1 +
𝑛∑︁
𝑖=1

𝛿𝑔𝑡𝑖 𝜇
𝑡
𝑖 )𝑊

𝑡 ≤ 𝑒𝛿 ⟨g
𝑡 ,𝜇𝑡 ⟩𝑊 𝑡

where inequality (∗) follows from that (1 + 𝑥)𝑟 ≤ (1 + 𝑟𝑥) for any
𝑥 ≥ 0 and 𝑟 ∈ [0, 1]. Thus, we have:

𝑊𝑇+1 ≤ 𝑒𝛿
∑𝑇

𝑡=1
⟨g𝑡 ,𝜇𝑡 ⟩𝑊 1 = 𝑒𝛿

∑𝑇
𝑡=1

⟨g𝑡 ,𝜇𝑡 ⟩𝑛 (3)

Observe that𝑊𝑇+1 ≥ 𝑤𝑇+1

𝑖
= (1 + 𝛿)

∑𝑇
𝑡=1

𝑔𝑡
𝑖𝑤1

𝑖
= (1 + 𝛿)

∑𝑇
𝑡=1

𝑔𝑡
𝑖 and

that:

𝑇∑︁
𝑡=1

⟨g𝑡 , 𝜇𝑡 ⟩ =

𝑇∑︁
𝑡=1

∑︁
𝑥 ∈𝑋

|𝑓 𝑡 (𝑥) |
𝜌

· 𝜇𝑡 (𝑣𝑖 )

=
1

𝜌
·

𝑇∑︁
𝑡=1

E𝑥∼𝜇𝑡 [|𝑓 𝑡 (𝑥) |] ≤ 𝑇𝛼

𝜌
.

Thus, by equation (3), it holds that:

(1 + 𝛿)
∑𝑇

𝑡=1
𝑔𝑡
𝑖 ≤ 𝑒

𝛿𝑇𝛼
𝜌 𝑛 . (4)

Taking the natural logarithm from both sides we obtain that

𝛿𝑇𝛼
𝜌 + ln𝑛 ≥ ∑𝑇

𝑡=1
𝑔𝑡
𝑖
· ln(1 + 𝛿) = ln(1+𝛿)

𝜌 ·∑𝑇
𝑡=1

|𝑓 𝑡 (𝑥𝑖 ) |, and thus

1

𝑇
·

𝑇∑︁
𝑡=1

|𝑓 𝑡 (𝑥𝑖 ) | ≤ 𝜌

𝑇 · ln(1 + 𝛿) ·
(
𝛿𝑇𝛼

𝜌
+ ln𝑛

)
=

𝛿𝛼

ln(1 + 𝛿) +
𝜌 · ln𝑛

𝑇 · ln(1 + 𝛿)

≤ 𝛼 (1 + 𝛿
2

) + 2𝜌 · ln𝑛

𝑇 · 𝛿 ,

where the last inequality follows as
𝛿

ln(1+𝛿) ≤ (1+ 𝛿
2
) and ln(1+𝛿) ≥

𝛿
2
for 𝛿 ∈ (0, 1

2
). By choosing 𝑇 =

4𝜌𝛼 ln𝑛

𝜖2
= 𝑂 ( 𝜌𝛼 log𝑛

𝜖2
) and

𝛿 =

√︃
4𝜌 ln𝑛

𝑇𝛼
=

√︃
𝜖2

𝛼2
= 𝜖

𝛼 < 1

2
, we obtain that

1

𝑇
·

𝑇∑︁
𝑡=1

|𝑓 𝑡 (𝑥𝑖 ) | ≤ 𝛼 + 𝛿 · 𝛼
2

+ 𝜖2

2𝛼 · 𝛿 = 𝛼 + 𝜖 ,

satisfying equation (2), which completes our proof. □

Observe that Lemma 4.2, combined with Remark 1, provides an

(𝑂 (𝑛), 1+ 𝜖
2
,𝑂 ( log𝑛

𝜖 ))-boundedOracle (when we apply Lemma 4.2

with parameter
𝜖
2
). Using Lemma 4.4 with parameter

𝜖
2
provides us

with an efficiently computable distribution over clan embeddings

with support size 𝑂 ( 𝑛 log𝑛

𝜖2
), distortion 𝑂 ( log𝑛

𝜖 ), and such that for

every 𝑥 ∈ 𝑋 , E(𝑓 ,𝜒)∼D [|𝑓 (𝑥) |] ≤ 1 + 𝜖 .
Similarly, by applying Lemma 4.2 with parameter 𝑘 , we get an

(𝑂 (𝑛1+ 1

𝑘 ),𝑂 (𝑛
1

𝑘 ), 16𝑘)-bounded Oracle. Thus Lemma 4.4 will pro-

duce an efficiently computable distribution over clan embeddings

with support size 𝑂 (𝑛1+ 2

𝑘 log𝑛), distortion 16𝑘 , and such that for

every 𝑥 ∈ 𝑋 , E(𝑓 ,𝜒)∼D [|𝑓 (𝑥) |] = 𝑂 (𝑛
1

𝑘 ). Theorem 1.1 now follows.

5 LOWER BOUND FOR CLAN EMBEDDINGS
INTO TREES

This section is devoted to proving Theorem 1.2, restated below.

Theorem 1.2 (Lower bound for clan embedding into a tree).

For every fixed 𝜖 ∈ (0, 1) and large enough 𝑛, there is an 𝑛-point

metric space (𝑋,𝑑𝑋 ) such that for every clan embedding (𝑓 , 𝜒) of
𝑋 into a tree with multiplicative distortion 𝑂 ( log𝑛

𝜖 ), it holds that∑
𝑥 ∈𝑋 |𝑓 (𝑥) | ≥ (1 + 𝜖)𝑛.

Furthermore, for every 𝑘 ∈ N, there is an 𝑛-point metric space (𝑋,𝑑𝑋 )
such that for every clan embedding (𝑓 , 𝜒) of 𝑋 into a tree with mul-

tiplicative distortion 𝑂 (𝑘), it holds that ∑𝑥 ∈𝑋 |𝑓 (𝑥) | ≥ Ω(𝑛1+ 1

𝑘 ).
The girth of an unweighted graph𝐺 is the length of the shortest

cycle in 𝐺 . The Erdős’ girth conjecture states that for any 𝑔 and 𝑛,

there exists an 𝑛-vertex graph with girth 𝑔 and Ω(𝑛1+ 2

𝑔−2 ) edges.
The conjecture is known to holds for 𝑔 = 4, 6, 8, 12 (see [24, 73]).

However, the best known lower bound for general 𝑘 is due to

Lazebnik et al. [61].

Theorem 5.1 ([61]). For every even 𝑔, and 𝑛, there exists an un-

weighted graph with girth 𝑔 and Ω(𝑛1+ 4

3
· 1

𝑔−2 ) edges.
From the upper bound perspective, the (generalized) Moore’s

bound [5, 12] states that every 𝑛 vertex graph with girth 𝑔 has at

most 𝑛
1+ 2

𝑔−2
edges for 𝑔 ≤ 2 log𝑛, and at most

𝑛

(
1 + (1 + 𝑜 (1)) ln(𝑚 − 𝑛 + 1)

𝑔

)
edges for larger 𝑔; here𝑚 is the number of edges.

We will be able to use Theorem 5.1 to prove the second asser-

tion in Theorem 1.2. That is, any clan embedding into a tree with

distortion 𝑂 (𝑘) must have

∑
𝑥 ∈𝑋 |𝑓 (𝑥) | ≥ Ω(𝑛1+ 1

𝑘 ). However, the
first assertion requires a much tighter lower bound of (1 + 𝜖)𝑛 on

the number of edges. Therefore, the asymptotic nature of Theo-

rem 5.1 is unfortunately not strong enough for our needs. We begin
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by showing that for large enough 𝑛 and 𝜖 ∈ (0, 1), there exists

an 𝑛-vertex graph with (1 + 𝜖)𝑛 edges and girth Ω( log𝑛
𝜖 ). We are

not aware of this very basic fact to previously appear in the litera-

ture. Note that Lemma 5.2 matches Moore’s upper bound (up to a

constant dependency on the girth 𝑔).

Lemma 5.2. For every fixed 𝜖 ∈ (0, 1) and large enough 𝑛, there
exists a graph with at least (1 + 𝜖)𝑛 edges and girth Ω( log𝑛

𝜖 ).

Remark 2 (Ultra sparse spanners). Given a graph 𝐺 = (𝑉 , 𝐸,𝑤),
a 𝑡-spanner is a subgraph 𝐻 of 𝐺 such that for every pair of vertices

𝑢, 𝑣 ∈ 𝑉 , 𝑑𝐻 (𝑢, 𝑣) ≤ 𝑡 · 𝑑𝐺 (𝑢, 𝑣). For every fixed 𝜖 ∈ (0, 1), Elkin and

Neiman [44] constructed ultra-sparse spanners with (1 + 𝜖)𝑛 edges

and stretch𝑂 ( log𝑛
𝜖 ). Even though they noted that the sparsity of their

spanner matches the Moore’s bound, it remained open whether one

can construct better spanners. As the only (𝑔 − 2)-spanner of a graph
with girth 𝑔 is the graph itself, Lemma 5.2 implies that the ultra sparse

spanner from [44] is tight (up to a constant in the stretch).

For the case of girth Ω(log𝑛), the first step is to replace the

asymptotic notation in the lower bound on the number of edges

from Theorem 5.1 with explicit bound.

Claim 2. For every 𝑛 ∈ 𝑁 , there exist an 𝑛-vertex graph with 2𝑛

edges and girth Ω(log𝑛).

Proof. Set 𝑝 = 4𝑛

(𝑛
2
) = 8

𝑛−1
. Consider a graph𝐺 = (𝑉 , 𝐸) sampled

according to 𝐺 (𝑛, 𝑝) (that is, each edge sampled to 𝐺 i.i.d. with

probability 𝑝 .). It holds that E[|𝐸 |] =
(𝑛
2

)
· 𝑝 = 4𝑛. By Chernoff

bound,

Pr [|𝐸 | < 3𝑛] ≤ 𝑒−
1

32
E[𝐸 ] = 𝑒−

𝑛
8 .

On the other hand, for 𝑡 ≥ 3, denote by𝐶𝑡 the set of cycles of length

exactly 𝑡 . Then,

E [|𝐶𝑡 |] ≤ 𝑛(𝑛 − 1) · · · (𝑛 − 𝑡 + 1) · 𝑝𝑡

=
𝑛(𝑛 − 1) · · · (𝑛 − 𝑡 + 1)

(𝑛 − 1)𝑡 · 4
𝑡 < 4

𝑡 .

Denote by C the set of all cycles of length smaller than
1

3
log𝑛.

Then

E [|C|] =
1

3
log𝑛−1∑︁
𝑡=3

E [|𝐶𝑡 |] ≤
1

3
log𝑛−1∑︁
𝑡=3

4
𝑡 < 4

1

3
log𝑛 = 𝑛

2

3 .

By Markov inequality, Pr [|C| ≥ 𝑛] ≤ E[ |C | ]
𝑛 < 𝑛−

1

3 < 1

2
. By union

bound, there exists a graph 𝐺 with at least 3𝑛 edges, and at most 𝑛

cycles of length less than
1

3
log𝑛. Let 𝐺 ′

be the graph obtained by

deleting an arbitrary single edge from each cycle. Continue deleting

edges until 𝐺 ′
has exactly 2𝑛 edges. We conclude that 𝐺 ′

has 2𝑛

edges and girth at least
1

3
log𝑛 as required. □

Proof of Lemma 5.2. Fix 𝛿 = 1−𝜖
2𝜖 . Set 𝑛′ = 𝜖𝑛 = 𝑛

1+2𝛿
. We

ignore issues of integrality during the proof. Such issues could be

easily fixed as we don’t state an explicit bound on the girth. Using

Claim 2, construct a graph𝐺 ′
with 𝑛′ vertices, 2𝑛′ edges, and girth

Ω(log𝑛′).

Let𝐺 be the graph obtained from𝐺 ′
by replacing each edge with

a path of length 𝛿 + 1. Then:

|𝑉 (𝐺) | = |𝑉 (𝐺 ′) | + 𝛿 · |𝐸 (𝐺 ′) | = 𝑛′ + 𝛿 · 2𝑛′ = 𝑛′(1 + 2𝛿) = 𝑛
|𝐸 (𝐺) | = (𝛿 + 1) · |𝐸 (𝐺 ′) | = (𝛿 + 1) · 2𝑛′

= 𝑛 · 2(1 + 𝛿)
1 + 2𝛿

= (1 + 𝜖)𝑛 ,

where the last equality follows by the definition of 𝛿 . Note that the

girth of 𝐺 is at least Ω((1 + 𝛿) log𝑛′) = Ω( log𝜖𝑛
𝜖 ) = Ω( log𝑛

𝜖 ), for
𝑛 large enough. □

The Euler characteristic of a graph 𝐺 is defined as 𝜒 (𝐺) B
|𝐸 (𝐺) | − |𝑉 (𝐺) | + 1. Our lower bound is based on the following

theorem by Rabinovich and Raz [68].

Theorem 5.3 ([68] ). Consider an unweighted graph 𝐺 with girth

𝑔, and consider a (classic) embedding 𝑓 : 𝐺 → 𝐻 of𝐺 into a weighted

graph𝐻 , such that 𝜒 (𝐻 ) < 𝜒 (𝐺). Then 𝑓 hasmultiplicative distortion

at least
𝑔
4
− 3

2
.

Next, we transfer the language of classic embeddings into graphs

used in Theorem 5.3 to that of clan embeddings into trees.

Lemma 5.4. Consider an unweighted, 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸)
with girth 𝑔, and let (𝑓 , 𝜒) be a clan embedding of𝐺 into a tree𝑇 with

multiplicative distortion 𝑡 <
𝑔
4
− 3

2
. Then necessarily

∑
𝑣∈𝑉 |𝑓 (𝑣) | ≥

𝑛 + 𝜒 (𝐺).

Proof. Let 𝐻 be the graph obtained from 𝑇 by merging all

the copies of each vertex. Specifically, arbitrarily order the ver-

tices in 𝑉 : 𝑣1, 𝑣2, . . . , 𝑣𝑛 . Iteratively construct a series of graphs

𝐻0 = 𝑇,𝐻1, 𝐻2, . . . , 𝐻𝑛 with one-to-many embeddings 𝑓𝑖 : 𝐺 → 𝐻𝑖 .

In the 𝑖’th iteration, we create𝐻𝑖 , 𝑓𝑖 out of𝐻𝑖−1, 𝑓𝑖−1 by replacing all

the vertices in 𝑓𝑖−1 (𝑣𝑖 ) by a single vertex 𝑣𝑖 . For a vertex 𝑢 ∈ 𝐻𝑖−1,

we add an edge from 𝑢 to 𝑣𝑖 if there was an edge from 𝑢 to some

vertex in 𝑓𝑖−1 (𝑣). If an edge {𝑢, 𝑣𝑖 } is added, its weight is defined
to be min𝑣′∈𝑓𝑖−1 (𝑣) 𝑤𝐻𝑖−1

(𝑣 ′, 𝑢). Set 𝐻 = 𝐻𝑛 , and
˜𝑓 = 𝑓𝑛 . Clearly,

distances in 𝐻 can only decrease compared to 𝑇 . This is because

for every 𝑢, 𝑣 ∈ 𝑉 , 𝑑𝐻 (�̃�, 𝑣) ≤ min𝑢′∈𝑓 (𝑢), 𝑣′∈𝑓 (𝑣) 𝑑𝑇 (𝑢 ′, 𝑣 ′) ≤
min𝑢′∈𝑓 (𝑢) 𝑑𝑇 (𝑢 ′, 𝜒 (𝑣)) ≤ 𝑡 · 𝑑𝐺 (𝑢, 𝑣). On the other hand, by in-

duction (and the triangle inequality), since 𝑓 is a dominating em-

bedding, one can show that
˜𝑓 is also dominating. That is ∀𝑢, 𝑣 ∈ 𝑉 ,

𝑑𝐻 (�̃�, 𝑣) ≥ 𝑑𝐺 (𝑢, 𝑣).
We conclude that

˜𝑓 is a classic embedding of𝐺 with a multiplica-

tive distortion at most 𝑡 <
𝑔
4
− 3

2
. By Theorem 5.3, it follows that

𝜒 (𝐻 ) ≥ 𝜒 (𝐺). For every 𝑖 , it holds that
𝜒 (𝐻𝑖 ) = |𝐸 (𝐻𝑖 ) | − |𝑉 (𝐻𝑖 ) | − 1

≤ |𝐸 (𝐻𝑖−1) | − (|𝑉 (𝐻𝑖−1) | − |𝑓 (𝑣𝑖 ) | + 1) − 1

= 𝜒 (𝐻𝑖−1) + |𝑓 (𝑣𝑖 ) | − 1

As the Euler characteristic of a tree equals 0, we obtain

𝜒 (𝐺) ≤ 𝜒 (𝐻 ) = 𝜒 (𝐻𝑛) ≤
∑︁
𝑖

( |𝑓 (𝑣𝑖 ) | − 1) + 𝜒 (𝑇 ) =
∑︁
𝑣∈𝑉

|𝑓 (𝑣) | −𝑛 ,

as desired. □

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. For the first assertion, using Lemma 5.2,

let 𝐺 be an unweighted graph with girth 𝑔 = Ω( log𝑛
𝜖 ) and (1 + 𝜖)𝑛

edges. Consider a clan embedding of 𝐺 into a tree with distortion

smaller than
𝑔
4
− 3

2
= Ω( log𝑛

𝜖 ). By Lemma 5.4, it holds that∑︁
𝑣∈𝑉

|𝑓 (𝑣) | ≥ 𝑛 + 𝜒 (𝐺) = |𝐸 (𝐺) | + 1 > (1 + 𝜖)𝑛 .

The second assertion follows similar lines. Set 𝑔 = 2 ·
⌊

4

3
𝑘+2

2

⌋
.

Note that 𝑔 is largest even number up to
4

3
𝑘 + 2. Using Theorem 5.1,

let 𝐺 be an unweighted graph with girth 𝑔 and Ω(𝑛1+ 4

3
· 1

𝑔−2 ) ≥
Ω(𝑛1+ 1

𝑘 ) edges. Consider a clan embedding of 𝐺 into a tree with

distortion smaller than
𝑔
4
− 3

2
= Ω(𝑘). By Lemma 5.4, it holds that∑︁

𝑣∈𝑉
|𝑓 (𝑣) | ≥ 𝑛 + 𝜒 (𝐺) = |𝐸 (𝐺) | + 1 = Ω(𝑛1+ 1

𝑘 ) .

□
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