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Abstract
Spanners for low dimensional spaces (e.g. Euclidean space of constant dimension, or
doubling metrics) are well understood. This lies in contrast to the situation in high
dimensional spaces, where except for the work of Har–Peled, Indyk and Sidiropoulos
(SODA 2013), who showed that any n-point Euclidean metric has an O(t)-spanner
with Õ(n1+1/t2) edges, little is known. In this paper we study several aspects of
spanners in high dimensional normed spaces. First, we build spanners for finite subsets
of �p with 1 < p ≤ 2. Second, our construction yields a spanner which is both sparse
and also light, i.e., its total weight is notmuch larger than that of theminimum spanning
tree. In particular, we show that any n-point subset of �p for 1 < p ≤ 2 has an O(t)-

spanner with n1+Õ(1/t p) edges and lightness nÕ(1/t p). In fact, our results are more
general, and they apply to anymetric space admitting a certain low diameter stochastic
decomposition. It is known that arbitrary metric spaces have an O(t)-spanner with
lightness O(n1/t ). We exhibit the following tradeoff: metrics with decomposability
parameter ν = ν(t) admit an O(t)-spanner with lightness Õ(ν1/t ). For example,
metrics with doubling constant λ, graphs of genus g, and graphs of treewidth k, all
have spanners with stretch O(t) and lightness Õ(λ1/t ), Õ(g1/t ), Õ(k1/t ) respectively.
While these families do admit a (1+ε)-spanner, its lightness depend exponentially on
the dimension (resp. log g, k). Our construction alleviates this exponential dependency,
at the cost of incurring larger stretch.

A preliminary version of this paper appeared in proceedings of 26th European Symposium on Algorithms
(ESA 2018) [37]. This full version contains a new result on light (sub-graph) spanners for graphs in
general (Theorem 4), and for graph of bounded treewidth (Corollary 7) in particular.
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1 Introduction

1.1 Spanners

Given a metric space (X , dX ), a weighted graph H = (X , E) is a t-spanner of X , if
for every pair of points x, y ∈ X , dX (x, y) ≤ dH (x, y) ≤ t · dX (x, y) (where dH is
the shortest path metric in H ). The factor t is called the stretch of the spanner. Two
important parameters of interest are: the sparsity of the spanner, i.e. the number of
edges, and the lightness of the spanner, which is the ratio between the total weight of
the spanner and the weight of the minimum spanning tree (MST).

The tradeoff between stretch and sparsity/lightness of spanners is the focus of an
intensive research effort, and low stretch spanners were used in a plethora of applica-
tions, to name a few: Efficient broadcast protocols [2, 3], network synchronization [2,
3, 10, 61, 63], data gathering and dissemination tasks [15, 27, 74], routing [63, 64, 71,
75], distance oracles and labeling schemes [60, 66, 72], and almost shortest paths [24,
29, 31, 34, 67]. The construction of spanners were studied in various computational
models [8, 13, 14, 28, 35, 62]. We refer to [4] for an extensive survey.

Spanners for general metric spaces are well understood. The seminal paper of
[6] showed that for any parameter k ≥ 1, any metric admits a (2k − 1)-spanner
with O(n1+1/k) edges, which is conjectured to be best possible. For light spanners,
improving [19, 30], it was shown in [25] that for every constant ε > 0 there is a
(2k − 1)(1 + ε)-spanner with lightness O(n1/k) and O(n1+1/k) edges.

There is an extensive study of spanners for restricted classes of metric spaces, most
notably subsets of low dimensional Euclidean space1, and more generally doubling
metrics.2 For such low dimensional metrics, much better spanners can be obtained.
Specifically, for n points in d-dimensional Euclidean space, [26, 56, 68, 73] showed
that for any ε ∈ (0, 1

2 ) there is a (1 + ε)-spanner with n · ε−O(d) edges and lightness
ε−O(d) (further details on Euclidean spanners could be found in [59]). This result
was recently generalized to doubling metrics by [18], with ε−O(ddim) lightness and
n · ε−O(ddim) edges (improving [40, 42, 69]). Such low stretch spanners were also
devised for metrics arising from certain graph families. For instance, [6] showed that
any planar graph admits a (1 + ε)-spanner with lightness O(1/ε). This was extended
to graphs with small genus3 by [43], who showed that every graph with genus g > 0
admits a spanner with stretch (1+ ε) and lightness O(g/ε). A long sequence of works
for other graph families, concluded recently with a result of [17], who showed (1+ε)-

1 That is a set of points X ⊂ R
d equipped with the Euclidean metric �2, for small d.

2 A metric space (X , d) has doubling constant λ if for every x ∈ X and radius r > 0, the ball B(x, 2r) can
be covered by λ balls of radius r . The doubling dimension is defined as ddim = log2 λ. A d-dimensional
�p space has ddim = �(d), and every n point metric has ddim = O(log n).
3 The genus of a graph is minimal integer g, such that the graph could be drawn on a surface with g
“handles”.
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spanners for graphs excluding Kr as a minor, with lightness ≈ O(r/ε3). See also [21,
47] for subset spanners.

In all these results there is an exponential dependence on a certain parameter of the
input metric space (the dimension, the logarithm of the genus/minor-size), which is
unfortunately unavoidable for small stretch (for all n-point metric spaces the dimen-
sion/parameter is at most O(log n), while spanner with stretch better than 3 requires
in general �(n2) edges [72]). So when the relevant parameter is small, light spanners
could be constructed with stretch arbitrarily close to 1. However, in metrics arising
from actual data, the parameter of interest may be moderately large, and it is not
known how to construct light spanners avoiding the exponential dependence on it. In
this paper, we devise a tradeoff between stretch and sparsity/lightness that can dimin-
ish this exponential dependence. To the best of our knowledge, the only such tradeoff
is the recent work of [45], who showed that n-point subsets of Euclidean space (in
any dimension) admit a O(t)-spanner with Õ(n1+1/t2) edges (without any bound on
the lightness).

1.2 Stochastic Decompositions

In a (stochastic) decomposition of a metric space, the goal is to find a partition of the
points into clusters of lowdiameter, such that the probability of nearbypoints to fall into
different clusters is small. More formally, for a metric space (X , dX ) and parameters
t ≥ 1 and δ = δ(|X |, t) ∈ [0, 1], we say that the metric is (t, δ)-decomposable, if for
every 	 > 0 there is a probability distribution over partitions of X into clusters of
diameter at most t ·	, such that every two points of distance at most	 have probability
at least δ to be in the same cluster.

Such decompositions were introduced in the setting of distributed computing [11,
54], and have played a major role in the theory of metric embedding [1, 12, 33, 36, 38,
48, 52, 65], distance oracles and routing [5, 57], multi-commodity flow/sparsest cut
gaps [50, 53] and also were used in approximation algorithms and spectral methods
[16, 23, 49]. We are not aware of any direct connection of these decompositions to
spanners (except spanners for general metrics implicit in [5, 57]).

Note that our definition is slightly different than the standard one. The probability
δ that a pair x, y ∈ X is in the same cluster may depend on |X | and t , but unlike
previous definitions, it does not depend on the precise value of dX (x, y) (rather, only
on the fact that it is bounded by 	). This simplification suits our needs, and it enables
us to capture more succinctly the situation for high dimensional normed spaces, where
the dependence of δ on dX (x, y) is non-linear. These stochastic decompositions are
somewhat similar to Locality Sensitive Hashing (LSH), that were used by [45] to
construct spanners. Themain difference is that in LSH, far away pointsmay bemapped
to the same cluster with some small probability, and more focus was given to efficient
computation of the hash function. It is implicit in [45] that existence of good LSH
imply sparse spanners.

A classic tool for constructing spanners in normed and doubling spaces is WSPD
(Well Separated Pair Decomposition, see [22, 46, 70]). Given a set of points P , a
WSPD is a set of pairs {(Ai , Bi )}i of subsets of P , where the diameters of Ai and Bi
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are at most an ε-fraction of d(Ai , Bi ), 4 and such that for every pair x, y ∈ P there is
some i with (x, y) ∈ Ai × Bi . A WSPD is designed to create a (1 + O(ε))-spanner,
by adding an arbitrary edge between a point in Ai and a point in Bi for every i (as
opposed to our construction, based on stochastic decompositions, in which we added
only inner-cluster edges). An exponential dependence on the dimension is unavoidable
with such a low stretch, thus it is not clear whether one can use aWSPD to obtain very
sparse or light spanners in high dimensions.

1.3 Our Results

Ourmain result is exhibiting a connection between stochastic decompositions ofmetric
spaces, and light spanners. Specifically, we show that if an n-point metric is (t, δ)-
decomposable, then for any constant ε > 0, it admits a (2+ ε) · t-spanner with Õ(n/δ)

edges and lightness Õ(1/δ). 5 (Abusing notation, Õ hides polylog(n) factors.)
It can be shown that Euclidean metrics are (t, n−O(1/t2))-decomposable, thus our

results extend [45] by providing a smaller stretch (2 + ε) · t-spanner, which is both
sparse–with Õ(n1+O(1/t2)) edges–and has lightness Õ(nO(1/t2)). For d-dimensional
Euclidean space, where d = o(log n)we can obtain Õ(n ·2O(d/t2)) edges and lightness
Õ(2O(d/t2)). We also show that n-point subsets of �p spaces for any fixed 1 < p < 2

are (t, n−O(log2 t/t p))-decomposable, which yields light spanners for such metrics as
well.

In addition, metrics with doubling constant λ are (t, λ−O(1/t))-decomposable [1,
41] which enables us to alleviate the exponential dependence on ddim in the spar-
sity/lightness by increasing the stretch. Two additional interesting families are graphs
with genus g which are (t, g−O(1/t))-decomposable [7, 55], and graph with treewidth
k which are (t, (k · log n)−O(1/t))-decomposable [7] 6. Here as well we can increase
the stretch and avoid exponential dependence on the family parameter. See Table 1
for more details. (We remark that for graphs excluding Kr as a minor, the current
best decomposition achieves probability only 2−O(r/t) [7] (see also [32]); if this can
be improved to the conjectured r−O(1/t), then our results would provide interesting
spanners for this family as well.)

One can view our result as an extension of light spanners results for decomposable
metrics. In [19, 25, 30] it was shown that any n-point metric (or graph) admits an
O(t)-spanner with lightness O(n1/t ). In this work, for a (t, δ)-decomposable metric,
we achieve a similar result, replacing the dependence on number of points n, by a
decomposability parameter ν = δ−t (up to polylog factors).

For example, consider an n-point metric with doubling constant λ = 2
√
log n . No

spanner with stretch o(log n/log log n) and lightness Õ(1) for such a metric was known.
Our result implies such a spanner, with stretch O(

√
log n).

4 d(Ai , Bi ) = max{d(x, y) | x ∈ Ai , y ∈ Bi } is the maximum pairwise distance between Ai to Bi .
5 Note that there is no explicit dependence between the stretch parameter t , and the sparsity/lightness.
Nonetheless, these dependence is implicit in the decomposition parameters, as for smaller stretch t , the
inclusion parameter δ becomes smaller as well, and thus the sparsity/lightness grow.
6 Originally this fact was observed by James R. Lee and Anastasios Sidiropoulos. A proof sketch could be
found in the full version of [7].
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Table 1 In this table we summarize some corollaries of our main result

Stretch Lightness Sparsity

Euclidean space O(t) Õ(n
1/t2 ) Õ(n1+1/t2 ) Corollary 3

O(
√
log n) Õ(1) Õ(n)

�p space, 1 < p < 2 O(t) Õ(n log2 t/t p ) Õ(n1+ log2 t/t p ) Corollary 4

O((log n · log log n)
1/p) Õ(1) Õ(n)

Doubling constant λ O(t) Õ(λ
1/t) Õ(n · λ

1/t) Corollary 5

O(log λ) Õ(1) Õ(n)

Graph with genus g O(t) Õ(g
1/t) O(n + g) Corollary 6

O(log g) Õ(1) O(n + g)

Treewidth k O(t) Õ(k
1/t) Õ(n · k1/t) Corollary 7

O(log k) Õ(1) Õ(n)

The metric spaces have cardinality n, and Õ hides (mild) polylog(n) factors. The stretch t is a parameter
ranging between 1 and log n

We also remark that the existence of light spanners does not imply decomposability.
For example, consider the shortest path metrics induced by bounded-degree expander
graphs. Even though thesemetrics have the (asymptotically)worst possible decompos-
ability parameters (they are only (t, n−�(1/t))-decomposable [51]), they nevertheless
admit 1-spanners with constant lightness (the spanner being the expander graph itself).

2 Preliminaries

Given a metric space (X , dX ), we will treat it as a complete weighted graph over X ,
where the weight of the edge {u, v} is simply dX (u, v). Let T denote its minimum
spanning tree (MST) of weight L . For a set A ⊆ X , the diameter of A is diam(A) =
maxx,y∈A dX (x, y).Wewill assume that theminimal distance in X is 1. Due to scaling,
this is without loss of generality.

By Oε we denote asymptotic notation which hides polynomial factors of 1
ε
, that is

Oε( f ) = O( f )/εO(1). Unless explicitly specified otherwise, all logarithms are in base
2.
Nets For r > 0, a set N ⊆ X is an r -net, if (1) for every x ∈ X there is a point y ∈ N
with dX (x, y) ≤ r , and (2) every pair of net points y, z ∈ N satisfy dX (y, z) > r . It
is well known that nets can be constructed in a greedy manner. For 0 < r1 ≤ r2 ≤
· · · ≤ rs , a hierarchical net is a collection of nested sets X ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Ns ,
where each Ni is an ri -net. Since Ni+1 satisfies the second condition of a net with
respect to radius ri , one can obtain Ni from Ni+1 by greedily adding points until the
first condition is satisfied as well.

In the following claim we argue that nets are sparse sets with respect to the MST
weight.

Claim 1 Consider a metric space (X , dX ) with MST of weight L, let N be an r-net,
then |N | ≤ 2L

r .
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Fig. 1 An edge {y, z} is cut by the ball BT (x, b) if dT (x, y) < b < dT (x, z). The edge that being cut are
depicted in orange (on the left). To subdivide an edge e = {x, y} of weight w the following steps are taken:
(1) Delete the edge e. (2) Add a new vertex ve . (3) Add two new edges {x, ve}, {ve, y} with weights α · w

and (1 − α) · w for some α ∈ (0, 1). On the right we subdivide the edges, so that no edge is cut (Color
figure online)

Proof Let T be theMST of X , note that for every x, y ∈ N , dT (x, y) ≥ dX (x, y) > r .
For a point x ∈ N , BT (x, b) = {y ∈ X | dT (x, y) ≤ b} is the ball of radius b around
x in the metric of T . We say that an edge {y, z} of T is cut by the ball BT (x, b) if
dT (x, y) < b < dT (x, z). Consider the set B of balls of radius r

2 around the points of
N . We can subdivide the edges of T until no edge is cut by any of the balls of B, see
Fig. 1 for an illustration. Note that the subdivisions do not change the total weight of
T nor the distances between the original points of X .

If both the endpoints of an edge e belong to the ball B, we say that the edge e is
internal to B. By the second property of nets, and since BT (x, b) ⊆ BX (x, b), the set
of internal edges corresponding to the balls B are disjoint. On the other hand, as the
tree is connected, the weight of the internal edges in each ball must be at least r

2 . This
is because there must be a path P for the center vertex c to some vertex not in the ball.
In particular, as no edge is cut, there is a sub-path of P fully contained in the ball of
weight at least r

2 . As this balls are disjoint, the weight of all these internal edges is at
least |N | · r

2 . As the total weight is bounded by L , it follows that |N | ≤ L · 2
r . 
�

Stochastic Decompositions Consider a partition P of X into disjoint clusters. For
x ∈ X , we denote by P(x) the cluster P ∈ P that contains x . A partition P is 	-
bounded if for every P ∈ P , diam(P) ≤ 	. If a pair of points x, y belong to the
same cluster, i.e. P(x) = P(y), we say that they are clustered together by P . Given a
distribution D, supp(D) denotes the support of the distribution.

Intuitively, a stochastic decomposition is a random partition of the points of a
metric space into diameter bounded clusters, such that close-by points are likely to be
clustered together. In our algorithm, we will create many stochastic decompositions
so to insure that each nearby pair of vertices will be clustered together in one of them.
Our spanner will be constructed by adding a “star” for each such cluster.

Definition 1 For metric space (X , dX ) and parameters t ≥ 1, 	 > 0 and δ ∈ [0, 1], a
distributionD over partitions of X is called a (t,	, δ)-decomposition, if it fulfills the
following properties.

• Every P ∈ supp(D) is t · 	-bounded.
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• For every x, y ∈ X such that dX (x, y) ≤ 	, PrD [P(x) = P(y)] ≥ δ.

A metric is (t, δ)-decomposable, where δ = δ(|X |, t), if it admits a (t,	, δ)-
decomposition for any 	 > 0. A family of metrics is (t, δ)-decomposable if each
member (X , dX ) in the family is (t, δ)-decomposable.

We observe that if a metric (X , dX ) is (t, δ(|X |, t))-decomposable, then also
every sub-metric Y ⊆ X is (t, δ(|X |, t))-decomposable. In some cases Y is also
(t, δ(|Y |, t))-decomposable (we will exploit these improved decompositions for sub-
sets of �p). The following claim argues that sampling O(

log n
δ

) partitions suffices to
guarantee that every pair is clustered at least once.

Claim 2 Let (X , dX ) be a metric space which admits a (t,	, δ)-decomposition, and
let N ⊆ X be of size |N | = n. Then there is a set

{P1, . . . ,Pϕ

}
of t · 	-bounded

partitions of N , where ϕ = 2 ln n
δ

, such that every pair x, y ∈ N at distance at most 	
is clustered together by at least one of the Pi .

Proof Let
{P1, . . . ,Pϕ

}
be i.i.d partitions drawn from the (t,	, δ)-decomposition of

X . Consider a pair x, y ∈ N at distance at most 	. The probability that x, y are not
clustered in any of the partitions is bounded by

Pr [∀i, Pi (x) = Pi (y)] ≤ (1 − δ)
(2 ln n)/δ ≤ 1

n2
.

The claim now follows by the union bound. 
�

3 Light Spanner Construction

In this section we present a generalized version of the algorithm of [45], depicted
in Algorithm 1. The differences in execution and analysis are: (1) Our construction
applies to general decomposable metric spaces–we use decompositions rather than
LSH schemes. (2) We analyze the lightness of the resulting spanners. (3) We achieve
stretch t · (2 + ε) rather than O(t).

The basic idea is as follows. For every weight scale 	i = (1 + ε)i , construct a
sequence of t ·	i -bounded partitions P1, . . . ,Pϕ such that every pair x, y at distance
≤ 	i will be clustered together at least once. Then, for each j ∈ [ϕ] and every cluster
P ∈ P j , we pick an arbitrary root vertex vP ∈ P , and add to our spanner edges
from vP to all the points in P . This ensures stretch 2t · (1 + ε) for all pairs with
dX (x, y) ∈ [(1− ε)	i ,	i ]. Thus, repeating this procedure on all scales i = 1, 2, . . .
provides a spanner with stretch 2t · (1 + ε).

However, the weight of the spanner described above is unbounded. In order to
address this problem at scale 	i , instead of taking the partitions over all points, we
partition only the points of an ε	i -net. The stretch is still small: x, y at distance 	i

will have nearby net points x̃, ỹ. Then, a combination of newly added edges with older
ones will produce a short path between x to y. The bound on the lightness will follow
from the observation that the number of net points is bounded with respect to the MST
weight.
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Theorem 1 Let (X , dX ) be a (t, δ)-decomposable n-point metric space. Then for every
ε ∈ (0, 1

8 ), there is a t · (2 + ε)-spanner for X with Oε

( n
δ

· log n · log t) edges, and
lightness Oε

( t
δ

· log2 n)
.

Algorithm 1 H = Spanner-From-Decompositions((X , dX ), t, ε)
input : (t, δ)-decomposable n-point metric space (X , dX ).
output: t · (2 + ε)-spanner H

1 Let N0 ⊇ N1 ⊇ · · · ⊇ Nlog1+ε L be a hierarchical net, where Ni is ε · 	i = ε · (1 + ε)i -net of (X , dX )

2 for i ∈ {
0, 1, . . . , log1+ε L

}
do

// Recall that L is the weight of the MST, and that we assume that
the minimal distance is 1.

3 For parameters	 = (1+2ε)	i and t , letP1, . . . ,Pϕi be the set of t ·	-bounded partitions guaranteed
by Claim 2 on the set Ni

4 for j ∈ {1, . . . , ϕi } and P ∈ P j do
5 Let vP ∈ P be an arbitrarily point.
6 Add to H an edge from every point x ∈ P\{vP } to vP .

7 return H

Proof We will prove stretch t · (2+ O(ε)) instead of t · (2+ ε). This is good enough,
as post factum we can scale ε accordingly.

Stretch Bound Let c > 1 be a constant (to be determined later). Consider a pair
x, y ∈ X such that (1 + ε)i−1 < dX (x, y) ≤ (1 + ε)i . We will assume by induction
that every pair x ′, y′ at distance at most (1 + ε)i−1 already enjoys stretch at most
α = t · (2 + c · ε) in H . Set 	i = (1 + ε)i , and let x̃, ỹ ∈ Ni be net points such that
dX (x, x̃), dX (y, ỹ) ≤ ε ·	i . By the triangle inequality dX (x̃, ỹ) ≤ (1+2ε) ·	i = 	.
Therefore there is a t ·	-bounded partitionP constructed at round i such thatP(x̃) =
P(ỹ). In particular, there is a center vertex v = vP(x̃) such that both {x̃, v} , {ỹ, v}
were added to the spanner H . Using the induction hypothesis on the pairs {x, x̃} and
{y, ỹ}, we conclude

dH (x, y) ≤ dH (x, x̃) + dH (x̃, v) + dH (v, ỹ) + dH (ỹ, y)

≤ α · ε	i + (1 + 2ε)t	i + (1 + 2ε)t	i + α · ε	i

(∗)
<

α

1 + ε
· 	i ≤ α · dX (x, y) ,

where the inequality (∗) follows as 2(1 + 2ε)t < α( 1
1+ε

− 2ε) for large enough

constant c, using that ε < 1
8 .

Sparsity bound For a point x ∈ X , let sx be the maximal index such that x ∈ Nsx .
Note that the number of edges in our spanner is not affected by the choice of “cluster
centers” in line 5 in Algorithm 1. Therefore, the edge count will be still valid if we
assume that vP ∈ P is the vertex y with maximal value sy among all vertices in P .

Consider an edge {x, y} added during the i’s phase of the algorithm. Necessarily
x, y ∈ Ni , and x, y belong to the same cluster P of a partition P j . W.l.o.g, y = vP ,
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in particular sx ≤ sy . The edge {x, y} will be charged upon x . Since the partitions at
level i are t · 	 bounded, we have that dX (x, y) ≤ t · 	 = t · (1 + 2ε) · (1 + ε)i .
Hence, for i ′ such that ε · (1 + ε)i

′
> t · (1 + 2ε) · (1 + ε)i , i.e. i ′ > i + Oε(log t),

the points x, y cannot both belong to Ni ′ . As sx ≤ sy , it must be that x /∈ Ni ′ . We
conclude that x can be charged in at most Oε (log t) different levels. As in level i each
vertex is charged for at most ϕi ≤ O(

log n
δ

) edges, the total charge for each vertex is

bounded by Oε(
log n·log t

δ
).

Lightness bound Consider the scale 	i = (1 + ε)i . As Ni is an ε · 	i -net, Claim
1 implies that Ni has size ni ≤ 2L

ε·	i
, and in any case at most n. In that scale, we

constructed ϕi = 2
δ
log ni ≤ 2

δ
log n partitions, adding at most ni edges per partition.

The weight of each edge added in this scale is bounded by O(t · 	i ).
Let H1 consist of all the edges added in scales i ∈ {log1+ε

L
n , . . . , log1+ε L}, while

H2 consist of edges added in the lower scales. Note that H = H1 ∪ H2.

w (H1) ≤
∑

i∈
{
log1+ε

L
n ,...,log1+ε L

}
O (t · 	i ) · ni · ϕi

= O

⎛

⎜⎜
⎝
t

δ
· log n ·

∑

i∈
{
log1+ε

L
n ,...,log1+ε L

}
	i · L

ε · 	i

⎞

⎟⎟
⎠ = Oε

(
t

δ
· log2 n

)
· L .

w (H2) ≤
∑

	i∈ L
n ·{(1+ε)−1,(1+ε)−2,...,}

O (t · 	i ) · ni · ϕi

= O

⎛

⎝ t

δ
· log n ·

∑

i≥1

1

(1 + ε)i

⎞

⎠ · L = Oε

(
t

δ
· log n

)
· L .

The bound on the lightness follows. 
�

4 Corollaries and Extensions

In this section we describe some corollaries of Theorem 1 for certain metric spaces,
and show some extensions, such as improved lightness bound for normed spaces, and
discuss graph spanners.

4.1 High Dimensional Normed Spaces

Here we consider the case that the given metric space (X , d) satisfies that every
sub-metric Y ⊆ X of size |Y | = n is (t, δ)-decomposable for δ = n−β , where
β = β(t) ∈ (0, 1) is a function of t . In such a case we are able to shave a log n factor
in the lightness.
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Theorem 2 Let (X , dX ) be an n-point metric space such that every Y ⊆ X is
(t, |Y |−β)-decomposable. Then for every ε ∈ (0, 1

8 ), there is a t · (2 + ε)-spanner

for X with Oε

(
n1+β · log n · log t) edges, and lightness Oε

(
t
β

· nβ · log n
)
.

Proof Using the same Algorithm 1, the analysis of the stretch and sparsity from The-
orem 1 is still valid, since the number partitions taken in each scale is smaller than in
Theorem 1. Recall that in scale i we set 	i = (1 + ε)i , and the size of the ε · 	i -
net Ni is ni ≤ max{ 2L

ε	i
, n}. The difference from the previous proof is that Ni is

(t, n−β
i )-decomposable, so the number of partitions taken is ϕi = O(nβ

i log ni ). In
each partition we might add at most one edge per net point, and the weight of this
edge is O(t · 	i ). We divide the edges of H to H1 and H2, and bound the weight of
H2 as above (using that ni ≤ n). For H1 we get,

w (H1) ≤
∑

i∈
{
log1+ε

L
n ,...,log1+ε L

}
O (t · 	i ) · ni · ϕi

= O

⎛

⎜⎜
⎝t ·

∑

i∈
{
log1+ε

L
n ,...,log1+ε L

}
	i · L

ε · 	i
·
(

L

ε · 	i

)β

log
L

ε · 	i

⎞

⎟⎟
⎠

= Oε

⎛

⎜⎜
⎝t ·

∑

i∈
{
log1+ε

L
n ,...,log1+ε L

}

(
L

	i

)β

· log L

	i

⎞

⎟⎟
⎠ · L

= Oε

⎛

⎝t ·
∑

i∈{0,...,log1+ε n}
(i + 1) · (

(1 + ε)β
)i

⎞

⎠ · L .

Set the function f (x) = ∑k
i=0 (i + 1) · xi , on the domain (1,∞), with parameter

k = log1+ε n. Then,

f (x) =
(∫

f dx

)′
=

(
k∑

i=0

xi+1

)′
=

(
xk+2 − x

x − 1

)′

=
(
(k + 2) xk+1 − 1

)
(x − 1) − (

xk+2 − x
)

(x − 1)2
≤ (k + 2) xk+1

x − 1
.

Hence,

w (H1) = Oε

(
t · f

(
(1 + ε)β

)) · L

= Oε

(

t · log1+ε n · (
(1 + ε)β

)log1+ε n

(1 + ε)β − 1

)

· L = Oε

(
t

β
· nβ · log n

)
· L .

123



Algorithmica

We conclude that the lightness of H is bounded by Oε

(
t
β

· nβ · log n
)
. 
�

In Sect. 5 we will show that any n-point Euclidean metric is (t, n−O(1/t2))-
decomposable, and that for fixed p ∈ (1, 2), any n-point subset of �p is (t, n−O( log2 t/t p))-
decomposable. The following corollaries are implied by Theorem 2 (rescaling t by a
constant factor allows us to remove the O(·) term in the exponent of n, while obtaining
stretch O(t)).

Corollary 3 For a set X of n points in Euclidean space, t > 1, there is an O(t)-spanner
with O

(
n1+1/t2 · log n · log t) edges, and lightness O

(
t3 · n1/t2 · log n)

.

Corollary 4 For a constant p ∈ (1, 2) and a set X of n points in �p space,
there is an O(t)-spanner with and O

(
n1+ log2 t/t p · log n · log t) edges, and lightness

O
(

t1+p

log2 t
· n log2 t/t p · log n

)
.

Remark 1 Corollary 3 applies for a set of points X ⊆ R
d ,where the dimensiond is arbi-

trarily large. If d = o(log n) we can obtain improved spanners. Specifically, n-point
subsets of d-dimensional Euclidean space are (O(t), 2−d/t2)-decomposable (see Sect.
6). Applying Theorem 1 we obtain an O(t)-spanner with Oε

(
n · 2d/t2 · log n · log t)

edges, and lightness Oε

(
t · 2d/t2 · log2 n)

.

4.2 DoublingMetrics

It was shown in [1] that metrics with doubling constant λ are (t, λ−O(1/t))-
decomposable (the case t = �(log λ) was given by [41]). Therefore, Theorem 1
implies:

Corollary 5 For every metric space (X , dX ) with doubling constant λ, and t ≥
1, there exist an O(t)-spanner with O

(
n · λ

1/t · log n · log t) edges, and lightness
O

(
t · log2 n · λ

1/t
)
.

4.3 Graph Spanners

In the case where the input is a graph G, it is natural to require that the spanner will
be a graph-spanner, i.e., a subgraph of G. Given a (metric) spanner H , one can define
a graph-spanner H ′ by replacing every edge {x, y} ∈ H with the shortest path from
x to y in G. It is straightforward to verify that the stretch and lightness of H ′ are no
larger than those of H (however, the number of edges may increase).

Consider a graph G with genus g. In [7] it was shown that (the shortest path metric
of) G is

(
t, g−O(1/t)

)
-decomposable. Furthermore, graphs with genus g have O(n+g)

edges [44], so any graph-spanner will have at most so many edges. By Theorem 1 we
have:

Corollary 6 Let G be a weighted graph on n vertices with genus g. Given a parameter
t ≥ 1, there exist an O(t)-graph-spanner of G with O(n + g) edges, and lightness
O

(
t · log2 n · g1/t

)
.

123



Algorithmica

For general graphs, the transformation to graph-spanners described above may
arbitrarily increase the number of edges (in fact, it will be bounded by O(

√|EH | · n),
[20]). Nevertheless, if we have a strong-decomposition, we can modify Algorithm 1
to produce a sparse spanner. In a graph G = (X , E), the strong-diameter of a cluster
A ⊆ X is maxv,u∈A dG[A](v, u), where G[A] is the induced graph by A (as opposed
to weak diameter, which is computed w.r.t the original metric distances). A partition
P of X is 	-strongly-bounded if the strong diameter of every P ∈ P is at most 	. A
distributionD over partitions of X is (t,	, δ)-strong-decomposition, if it is (t,	, δ)-
decomposition and in addition every partition P ∈ supp(D) is 	-strongly-bounded.
A graph G is (t, δ)-strongly-decomposable, if for every 	 > 0, the graph admits a
(	, t · 	, δ)-strong-decomposition.

Theorem 3 Let G = (V , E, w) be a (t, δ)-strongly-decomposable, n-vertex graph
with aspect ratio  = maxe∈E w(e)

mine∈E w(e) . Then for every ε ∈ (0, 1/8), there is a t · (2 + ε)-

graph-spanner for G with Oε(
n
δ

· log n · log) edges, and lightness Oε

( t
δ

· log2 n)
.

Proof We will execute Algorithm 1 with several modifications:

1. The for loop (in Line 2) will go over scales i ∈ {0, . . . , log1+ε } (instead
{0, . . . , log1+ε L}).

2. We will use strong-decompositions instead of regular (weak) decompositions.
3. The partitions created in Line 3 will be over the set of all vertices X , rather then

only net points Ni (as otherwise it will be impossible to get strong diameter).
However, the requirement from close pairs to be clustered together (at least once),
is still applied to net points only. Similarly to Claim 2, ϕi = (2 ln ni )/δ repetitions
will suffice.

4. In Line 6, we will no longer add edges from vP to all the net points in P ∈ P j .
Instead, for every net point x ∈ P ∩ Ni , we will add a shortest path in G[P] from
vP to x . Note that all the edges added in all the clusters constitute a forest. Thus
we add at most n edges per partition.

We now prove the stretch, sparsity and lightness of the resulting spanner.

Stretch By the triangle inequality, it is enough to show small stretch guarantee only
for edges (that is, only for x, y ∈ V s.t. {x, y} ∈ E .) As we assumed that the minimal
distance is 1, all the weights are within [1,]. In particular, every edge {x, y} ∈ E has
weight (1+ ε)i−1 < w ≤ (1+ ε)i for i ∈ {0, . . . , log1+ε }. The rest of the analysis
is similar to Theorem 1, with the only difference being that we use a path from vP
to x̃ rather than the edge {x̃, vP }. This is fine since we only require that the length of
this path is at most (t · (1 + 2ε) · 	), which is guaranteed by the strong diameter of
clusters.

Sparsity We have Oε(log) scales. In each scale we had at most ϕi ≤ 2
δ
log n

partitions, where for each partition we added at most n edges. The bound on the
sparsity follows.

Lightness Consider scale i . We have ni net points. For each net point we added at
most one shortest path of weight at most O(t ·	i ) (as each cluster is O(t ·	i )-strongly
bounded). As the number of partitions is ϕi , the total weight of all edges added at scale
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i is bounded by O(t · 	i ) · ni · ϕi . The rest of the analysis follows by similar lines to
Theorem 1 (noting that  < L). 
�

Next we consider graph families which are closed under edge contractions. Given
a weighted graph G = (X , E, w), contracting an edge {u, v} ∈ E creates a new
graph G ′ where the vertices v, u are replaced by a new vertex w, and every edge
{v, x} or {u, x} is replaced by an edge {w, x} of the same weight. If duplicates are
created, we keep only the edge of smaller weight. A graph family F is closer under
edge contractions, if for every graph G ∈ F and edge e ∈ G, the graph created by
contracting e inG also belongs toF . Examples of such families being graph excluding
a fixed minor, bounded treewidth graph etc. For such families we are able to remove
the dependency on the aspect ration in the sparsity.

Theorem 4 Let F be a graph family closed under contractions, such that every G ∈
F is (t, δ)-strongly-decomposable. Then for every n-vertex graph G ∈ F and ε ∈
(0, 1/8), there is a t · (2 + ε)-graph-spanner with Oε(

n
δ

· log2 n) edges, and lightness
Oε

( t
δ

· log2 n)
.

Proof In Algorithm 2 we describe a modified algorithm for the families closed under
contraction case. We assume here that there is a unique shortest path between every
pair of vertices. If this is not the case, we can introduce negligible perturbations on
the weights to achieve such a state.

Algorithm2H = Graph-Spanner-From-Decompositions((X , E, w), t, ε)
input : (t, δ)-decomposable n-point weighted graph G.
output: t · (2 + ε)-spanner H .

8 Let N0 ⊇ N1 ⊇ · · · ⊇ Nlog1+ε L be a hierarchical net, where Ni is ε · 	i = ε · (1 + ε)i -net of X

9 For a vertex v ∈ V , let sv be the maximal index such that v ∈ Nsv
10 Let v1, . . . , vn be an order of the vertices such that i ≥ j ⇒ svi ≥ sv j
11 for i ∈ {

0, 1, . . . , log1+ε L
}
do

// Recall that L is the weight of the MST, and that we assume that
the minimal distance is 1.

12 Contract all edges of weight bellow ε·	i
n2

. Associate each super node x̂ with the vertex vi ∈ x̂ with

maximal index. Denote the new graph by Ĝi
13 For parameters 	 = (1+ 2ε)	i and t , let P1, . . . ,Pϕi be the set of t · 	-strongly-bounded partitions

guaranteed by Claim 2 on the set Ni in Ĝi
14 for j ∈ {1, . . . , ϕi } and P ∈ P j do
15 Let v̂P ∈ P be the point with highest index in P

16 Add to H the shortest path (in P ⊆ Ĝi ) from every point x ∈ P ∩ Ni\{v̂P } to v̂P (i.e. for every

edge {x̂, ŷ} ∈ Ĝi in a shortest path we want to add, add some edge {x, y} ∈ G such that x ∈ x̂ and
y ∈ ŷ)

17 return H .

We now prove the stretch, sparsity and lightness of the resulting spanner.

StretchConsider a pair x, y ∈ X such that (1+ε)i−1 < dG(x, y) ≤ (1+ε)i . Similarly
to the proof of Theorem 1, we assume by induction that every pair x ′, y′ at distance at
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most (1+ε)i−1 already enjoys stretch atmostα = t ·(2+c·ε) in H (for c > 1 a constant
to be determined later). Set 	i = (1 + ε)i , and let x̃, ỹ ∈ Ni be net points such that
dG(x, x̃), dG(y, ỹ) ≤ ε ·	i . By the triangle inequality dG(x̃, ỹ) ≤ (1+2ε) ·	i = 	.

Let x̂, ŷ ∈ Ĝi be the nodes containing x̃, ỹ, respectively. Note that contractions
might only decrease distances, therefore dĜi

(x̂, ŷ) ≤ dG(x̃, ỹ) ≤ 	. In particular,
there is a t · 	-bounded partition P constructed for scale i such that P(x̂) = P(ŷ).
There is a center vertex v̂P such that we added to H paths (in Ĝi ) from both x̂, ŷ to v̂P .
More formally, there is a path x̂ = v̂0, v̂1, . . . , v̂k = ŷ in Ĝi of weight at most 2 · t ·	,
such that for every 0 ≤ j ≤ k − 1 we added an edge from v2j ∈ v̂ j to v1j+1 ∈ v̂ j+1 to

the spanner H . In particular
∑k−1

j=0 w
(
{v2j , v1j+1}

)
≤ 2 · t ·	. Set v10 = x̃ and v2k = ỹ.

For every j , as both v1j , v
2
j belong to v̂ j , a node that created by contracting at most

n − 1 edges of weight at most ε·	i
n2

, we have dG(v1j , v
2
j ) <

ε·	i
n < (1+ ε)i−1. By our

induction hypothesis, dH (v1j , v
2
j ) ≤ α · ε·	i

n . Summing over all these paths we get

dH (x̃, ỹ) ≤
k∑

j=0

dH
(
v1j , v

2
j

)
+

k−1∑

j=0

dH
(
v2j , v

1
j+1

)

≤ α · ε · 	i + 2 · t · 	 .

Using the induction hypothesis on the pairs {x, x̃} and {y, ỹ}, we conclude

dH (x, y) ≤ dH (x, x̃) + dH (x̃, ỹ) + dH (ỹ, y)

≤ α · ε	i + α · ε · 	i + 2 · t · 	 + α · ε	i

(∗)
<

α

1 + ε
· 	i ≤ α · dG (x, y) ,

where the inequality (∗) holds for large enough constant c, using that ε < 1
8 .

Sparsity For a vertex vs , denote by D(vs) = mins′>s dG(vs, vs′) the distance from vs
to the closest vertex of higher index (D(vn) = ∞). We say that vs is active at scale
i if ε	i

n2
< D(vs) ≤ 2t · 	i . As D(vs) is fixed, each vertex vs is active in at most

log1+ε
2t ·n2

ε
= Oε(log n) scales. We denote by ai the number of active vertices at

scale i .
Consider Ĝi , we will abuse notation and denote each node x̂ ∈ Ĝi by vs ∈ x̂ , the

vertexwith highest index in x̂ . Note that for every vs ∈ Ĝ, necessarily D(vs) ≥ ε	i
n2

(as
otherwise vs would’ve been contracted with a vertex of higher index). Next, consider
a partition P j of Ĝi drawn at scale i . For each cluster P ∈ P j , v̂P ∈ P is the vertex
with highest index in P . For every node vs ∈ P\{v̂P }, dĜ(v̂P , vs) ≤ t · (1+ 2ε) · 	i .

In other words, there is a path vs = v̂0, v̂1, . . . , v̂k = v̂P in Ĝi such that for every
0 ≤ j ≤ k − 1, there is an edge {v2j , v1j+1} ∈ G where v2j ∈ v̂ j and v1j+1 ∈ v̂ j+1 such

that
∑k−1

j=0 w
(
{v2j , v1j+1}

)
≤ t · (1+ 2ε) · 	i . Set v10 = vs and v2k = v̂P . For every j ,

as both v1j , v
2
j belong to v̂ j , a node that created by contracting at most n − 1 edges of
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weight at most ε·	i
n2

, we have dG(v1j , v
2
j ) ≤ ε·	

n . Therefore

dG
(
vs, v

P
)

≤
k∑

j=0

dG
(
v1j , v

2
j

)
+

k−1∑

j=0

dG
(
v2j , v

1
j+1

)

≤ ε · 	i + t · (1 + 2ε) · 	i ≤ 2 · t · 	i .

In particular, D(vs) ≤ 2 · t · 	i . We conclude that P includes at least |P| − 1 active
vertices.

For each cluster P , note that the Ĝ edges added to H in Line 16 are all contained in
the shortest path tree rooted in v̂P . In particular, we added to H at most |P| − 1 edges
due to P . We conclude that the number of edges added to H for the partition P j is
bounded by

∑
P∈P j

|P| − 1 ≤ ai (as P contains at least |P| − 1 active vertices). In

particular, the total number of edges added in scale i is boundedbyϕi ·ai = O(ai · log nδ
).

As each vertex vs is active in at most Oε(log n) scales we conclude:

|H | ≤
log1+ε L∑

i=0

O

(
ai · log n

δ

)
= Oε

(
n · log

2 n

δ

)
.

Lightness The same reasoning as in the proof of Theorem 3 works here as well (as
the total weight of all edges added at scale i is bounded by O(t · 	i · ni · ϕi .). 
�

Consider the family of graphs with treewidth k. In [7] (see footnote 6) it was shown
that such graphs are

(
t, (k · log n)−O(1/t)

)
-strongly-decomposable. By Theorem 4 we

have:

Corollary 7 Let G be a weighted graph on n vertices with treewidth k. Given a param-
eter t ≥ 1, there exist an O(t)-graph-spanner of G with O

(
n · k1/t · log2+1/t n

)
edges,

and lightness O
(
k1/t · t · log2+1/t n

)
.

5 LSH Induced Decompositions

In this section, we prove that LSH (locality sensitive hashing) induces decompositions.
In particular, using the LSH schemes of [9, 58], we will get decompositions for �2 and
�p spaces, 1 < p < 2.

Definition 2 (Locality-Sensitive-Hashing) Let H be a family of hash functions map-
ping a metric (X , dX ) to some universe U . We say that H is (r , cr , p1, p2)-sensitive
if for every pair of points x, y ∈ X , the following properties are satisfied:

1. If dX (x, y) ≤ r then Prh∈H [h(x) = h(y)] ≥ p1.
2. If dX (x, y) > cr then Prh∈H [h(x) = h(y)] ≤ p2.

Given an LSH, its parameter is γ = log 1/p1
log 1/p2

. We will implicitly always assume that

p1 ≥ n−γ (n = |X |), as indeed will occur in all the discussed settings. Andoni and
Indyk [9] showed that for Euclidean space (�2), and large enough t > 1, there is an
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LSH with parameter γ = O
(

1
t2

)
. Nguyen [58], showed that for constant p ∈ (1, 2),

and large enough t > 1, there is an LSH for �p, with parameter γ = O
(
log2 t
t p

)
. We

start with the following claim.

Claim 8 Let (X , dX ) be a metric space, such that for every r > 0, there is
an (r , t · r , p1, p2)-sensitive LSH family with parameter γ . Then there is an(
r , t · r , n−O(γ ), n−2

)
-sensitive LSH family for X.

Proof Set k =
⌈
log 1

p2
n2

⌉
≤ O(log n)

log 1
p2

, and let H be the promised (r , t · r , p1, p2)-
sensitive LSH family. We define an LSH family H ′ as follows. In order to sample h ∈
H ′, pickh1, . . . , hk uniformly and independently at randomfrom H . The hash function
h is defined as the concatenation of h1, . . . , hk . That is, h(x) = (h1(x), . . . , hk(x)).

For x, y ∈ X such that dX (x, y) ≥ t · r it holds that

Pr [h(x) = h(y)] = �i Pr [hi (x) = hi (y)] ≤ pk2 ≤ n−2 .

On the other hand, for x, y ∈ X such that dX (x, y) ≤ r , it holds that

Pr [h(x) = h(y)] = �i Pr [hi (x) = hi (y)] ≥ pk1 = 2
− log 1

p1
· O(log n)

log 1
p2 = n−O(γ ) .


�
Lemma 9 Let (X , dX ) be a metric space, such that for every r > 0, there is a
(r , t · r , p1, p2)-sensitive LSH family with parameter γ . Then (X , dX ) is (t, n−O(γ ))-
decomposable.

Proof Let H ′ be an
(
r , tr , n−O(γ ), n−2

)
-sensitive LSH family, given by Claim 8.

We will use H ′ in order to construct a decomposition for X . Each hash function
h ∈ H ′ induces a partition Ph , by clustering all points with the same hash value, i.e.
Ph(x) = Ph(y) ⇐⇒ h(x) = h(y). However, in order to ensure that our partition
will be t · r -bounded, we modify it slightly. For x ∈ X , if there is a y ∈ Ph(x) with
dX (x, y) > t · r , remove x from Ph(x), and create a new cluster {x}. Denote by P ′

h
the resulting partition. P ′

h is clearly t · r -bounded, and we argue that every pair x, y at
distance at most r is clustered together with probability at least n−O(γ ). Denote by χx

(resp., χy) the probability that x (resp., y) was removed from Ph(x) (resp., Ph(y)).
By the union bound on the at most n points in Ph(x), we have that both χx , χy ≤ 1

n .
We conclude

Pr
P ′
h

[P ′
h(x) = P ′

h(y)
] ≥ Pr

h∼H
[h(x) = h(y)] − Pr

h

[
χx ∨ χy

] ≥ n−O(γ ) − 2

n
= n−O(γ ) .


�
Using [9], Lemma 9 implies that �2 is (t, n−O(1/t2))-decomposable. Moreover, using

[58] for constant p ∈ (1, 2), Lemma9 implies that �p is (t, n−O( log2 t/t p))-decomposable.
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6 Decomposition for d-Dimensional Euclidean Space

In Sect. 5, using a reduction from LSH, we showed that �2 is (t, n−O(1/t2))-
decomposable. Here, we will show that for dimension d = o(log n), using a direct
approach, better decomposition could be constructed.

Denote by Bd(x, r) the d dimensional ball of radius r around x (w.r.t �2 norm).
Vd(r) denotes the volume of Bd(x, r) (note that the center here is irrelevant). Denote
by Cd(u, r) the volume of the intersection of two balls of radius r , the centers of
which are at distance u (i.e. for ‖x − y‖2 = u, Cd(u, r) denotes the volume of
Bd(x, r) ∩ Bd(y, r)). We will use the following lemma which was proved in [9]
(based on a lemma from [39]).

Lemma 10 ([9]) For any d ≥ 2 and 0 ≤ u ≤ r

�

(
1√
d

)
·
(
1 −

(u
r

)2)
d
2 ≤ Cd(u, r)

Vd(r)
≤

(
1 −

(u
r

)2)
d
2

.

Using Lemma 10, we can construct better decompositions:

Lemma 11 For every d ≥ 2 and 2 ≤ t ≤ √
2d/ln d, �d2 is O(t, 2−O( d

t2
)
)-decomposable.

Proof Consider a set X of n points in �d2 , and fix r > 0. Let B be some box
which includes all of X and such that each x ∈ X is at distance at least t · r from
the boundary of B. We sample points s1, s2 . . . uniformly at random from B. Set
Pi = BX (si ,

t ·r
2 )\⋃i−1

j=1 BX
(
s j ,

t ·r
2

)
. We sample points until X = ⋃

i≥1 Pi . Then,
the partition will be P = {P1, P2, . . . .} (dropping empty clusters).

It is straightforward thatP is t ·r -bounded. Thus it will be enough to prove that every
pair x, y at distance at most r , has high enough probability to be clustered together.
Let si be the first point sampled in Bd

(
x, t ·r

2

) ∪ Bd
(
y, t ·r

2

)
. By the minimality of i ,

x, y /∈ ⋃i−1
j=1 Bd

(
s j ,

t ·r
2

)
and thus both are yet un-clustered.

If si ∈ Bd
(
x, t ·r

2

) ∩ Bd
(
y, t ·r

2

)
then both x, y join Pi and thus clustered together.

Using Lemma 10 we conclude,

Pr
P
[P(x) = P(y)] = Pr

[
si ∈ Bd

(
x,

t · r
2

)
∩ Bd

(
y,

t · r
2

)

∣∣∣si is first in Bd

(
x,

t · r
2

)
∪ Bd

(
y,

t · r
2

) ]

≥ Cd(‖x − y‖2, t ·r
2 )

2 · Vd
( t ·r
2

) = �

(
1√
d

) ⎛

⎝1 −
(

‖x − y‖2
t ·r
2

)2
⎞

⎠

d
2

= �

(
1√
d

)(
1 − 4

t2

) d
2 = �

(
e
− 2d

t2
− 1

2 ln d
)

= 2−O(d/t2) .
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