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THE GREEDY SPANNER IS EXISTENTIALLY OPTIMAL\ast 

ARNOLD FILTSER\dagger AND SHAY SOLOMON\ddagger 

Abstract. The greedy spanner is arguably the simplest and most well-studied spanner construc-
tion. Experimental results demonstrate that it is at least as good as any other spanner construction
in terms of both the size and weight parameters. However, a rigorous proof for this statement has
remained elusive. In this work we fill in the theoretical gap via a surprisingly simple observation: The
greedy spanner is existentially optimal (or existentially near-optimal) for several important graph
families in terms of both size and weight. Roughly speaking, the greedy spanner is said to be ex-
istentially optimal (or near-optimal) for a graph family \scrG if the worst performance of the greedy
spanner over all graphs in \scrG is just as good (or nearly as good) as the worst performance of an
optimal spanner over all graphs in \scrG . Focusing on the weight parameter, the state-of-the-art spanner
constructions for both general graphs (due to Chechik and Wulff-Nilsen [ACM Trans. Algorithms, 14
(2018), 33]) and doubling metrics (due to Gottlieb [Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science, 2015, pp. 759--772]) are complex. Plugging our observation
into these results, we conclude that the greedy spanner achieves near-optimal weight guarantees for
both general graphs and doubling metrics, thus resolving two longstanding conjectures in the area.
Further, we observe that approximate-greedy spanners are existentially near-optimal as well. Con-
sequently, we provide an O(n logn)-time construction of (1 + \epsilon )-spanners for doubling metrics with
constant lightness and degree. Our construction improves Gottlieb's construction, whose runtime
is O(n log2 n) and whose number of edges and degree are unbounded, and, remarkably, it matches
the state-of-the-art Euclidean result (due to Gudmundsson, Levcopoulos, and Narasimhan [SIAM J.
Comput., 31 (2002), pp. 1479--1500]) in all of the involved parameters (up to dependencies on \epsilon and
the dimension).
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1. Introduction.

1.1. Graph spanners. Given a (connected and undirected) n-vertex m-edge
graph G = (V,E,w) with positive edge weights and a parameter t \geq 1, a subgraph
H = (V,E\prime , w) of G (E\prime \subseteq E) is called a t-spanner for G if for all u, v \in V , \delta H(u, v) \leq 
t \cdot \delta G(u, v). (Here \delta G(u, v) and \delta H(u, v) denote the distances between u and v in the
graphs G and H, respectively.) The parameter t is called the stretch of H.1 Spanners
constitute a fundamental graph structure and have been extensively and intensively
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1More accurately, the stretch of H is the minimum number t\prime such that H is a t\prime -spanner for G,
and hence t is in fact an upper bound on the stretch of H. However, referring to t as the stretch of H
is standard terminology in the area and is technically more convenient when the focus is existential
bounds on spanner properties that depend on the stretch parameter, as in the current work.
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430 ARNOLD FILTSER AND SHAY SOLOMON

studied since they were introduced [PS89, PU89a].
In many practical applications one is required to construct a spanner that satisfies

a number of useful properties while preserving a small stretch. First, the spanner H
should have a small number of edges. Second, its weight w(H) =

\sum 
e\in E w(E) should

be close to the weight of a minimum spanning tree (MST) of the graph G. We

henceforth refer to the normalized notion of weight \Psi (H) = w(H)
w(MST (G)) , which is

called lightness; a light spanner is one with small lightness. Third, its degree \Delta (H),
defined as the maximum number of edges incident on a vertex, should be small.

Light and sparse spanners are particularly useful for efficient broadcast proto-
cols in the message-passing model of distributed computing [ABP90, ABP91], where
efficiency is measured with respect to both the total communication cost (corre-
sponding to the spanner's size and weight) and the speed of message delivery at
all destinations (corresponding to the spanner's stretch). Additional applications
of such spanners in distributed systems include network synchronization and com-
puting global functions [Awe85, PU89a, ABP90, ABP91, Pel00a]. Light and sparse
spanners were also found useful for various data gathering and dissemination tasks
in overlay networks [BKR+02, VWF+03, DK02] and wireless and sensor networks
[vRW04, BDS04, SS10]; for VLSI circuit design [CKR+91, CKR+92a, CKR+92b,
SCRS01]; for routing [WCT02, PU89a, PU89b, TZ01b]; to compute distance or-
acles and labels [Pel00b, TZ01a, RTZ05]; and to compute almost shortest paths
[Coh98, RZ11, Elk05, EZ06, FKM+05]. Low degree spanners are also very useful in
many of these applications. For example, the degree of the spanner is what determines
local memory constraints when using spanners to construct network synchronizers and
efficient broadcast protocols. In compact routing schemes, the use of low degree span-
ners enables the routing tables to be of small size. More generally, viewing vertices as
processors, we see that in many applications the degree of a processor represents its
load, and hence a low degree spanner guarantees that the load on all of the processors
in the network will be low.

The greedy spanner by Alth\"ofer et al. [ADD+93] is arguably the simplest and most
well-studied spanner construction. Alth\"ofer et al. showed that for every weighted n-
vertex graph G = (V,E,w) and an integer parameter k \geq 1, the greedy algorithm (see
Algorithm 1) constructs a (2k  - 1)-spanner with O(n1+1/k) edges; assuming Erd\H os'
girth conjecture [Erd64], this size bound is asymptotically tight. Alth\"ofer et al. also
showed that the lightness of the greedy spanner is O(n/k). Chandra et al. [CDNS92]
improved the lightness bound and showed that the greedy spanner for stretch param-
eter t = (2k - 1) \cdot (1+ \epsilon ) (here k > 1, \epsilon > 0) has lightness O(k \cdot n1/k \cdot (1/\epsilon )1+1/k). Two
decades later, Elkin, Neiman, and the second author [ENS14] improved the analy-
sis of [CDNS92] and showed that the greedy (2k  - 1) \cdot (1 + \epsilon )-spanner has lightness
O(n1/k \cdot (1 + k/(\epsilon 1+1/k log k))). In a very recent breakthrough, Chechik and Wulff-
Nilsen [CW18] improved the lightness bound all the way to O(n1/k(1/\epsilon )3+2/k). As-
suming Erd\H os' girth conjecture [Erd64] and ignoring dependencies on \epsilon , the bound of
[CW18] on the lightness is asymptotically tight, thus resolving a major open question
in this area. However, the result of Chechik and Wulff-Nilsen [CW18] is not due to a
refined analysis of the greedy spanner. Instead, they devised a different construction,
which is far more complex, and bounded the lightness of their own construction. The
following question was left open.

Question 1. Is the lightness analysis of [ENS14] for the greedy spanner optimal,
or can one refine it to derive a stronger bound? In particular, is the spanner of [CW18]
lighter than the greedy spanner?
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1.2. Spanners for Euclidean and doubling metrics. Consider a set P of n
points in \BbbR d, d \geq 2, and a stretch parameter t \geq 1. A graph G = (P,E,w) in which
the weight w(p, q) of each edge e = (p, q) \in E is equal to the Euclidean distance
\| p  - q\| between p and q is called a Euclidean graph. We say that the Euclidean
graph G is a t-spanner for P (or, equivalently, for the corresponding Euclidean metric
(P, \| \cdot \| )) if for every pair p, q \in P of distinct points, there exists a path \Pi (p, q) in
G between p and q whose weight (i.e., the sum of all edge weights in it) is at most
t \cdot \| p  - q\| . The path \Pi (p, q) is said to be a t-spanner path between p and q. For
Euclidean metrics, one usually focuses on the regime t = 1 + \epsilon , for \epsilon > 0 being an
arbitrarily small parameter. Euclidean spanners were introduced by Chew [Che89]
and have been subject to intensive, ongoing research efforts since then. We refer the
reader to the book [NS07], which is devoted almost exclusively to Euclidean spanners
and their numerous applications. As with general graphs, it is important to devise
Euclidean spanners that achieve small size, lightness, and degree.

The doubling dimension of a metric space (M, \delta ) is the smallest value ddim such
that every ball B in the metric space can be covered by at most 2ddim balls of half
the radius of B. This notion generalizes the Euclidean dimension, since the doubling
dimension of the Euclidean space \BbbR d is \Theta (d). A metric space is called doubling if
its doubling dimension is constant. Spanners for doubling metrics have also been
the subject of intensive research [GGN04, CGMZ16, CG09, HM06, Rod12, GR08a,
GR08c, Smi09, ES15, Sol14]. The basic line of work in this context is to generalize
the known Euclidean spanner results for arbitrary doubling metrics.

Das, Heffernan, and Narasimhan [DHN93] showed that in low-dimensional Euclid-
ean metrics \BbbR d, the greedy (1 + \epsilon )-spanner has constant degree (and so O(n) edges)
and O(1/\epsilon )2d) lightness. In n-point doubling metrics, the greedy (1 + \epsilon )-spanner has
O(n) edges and lightness O(log n) [Smi09]. As for the degree, there exist n-point
metric spaces with doubling dimension 1 for which the greedy spanner has a degree of
n - 1 [HM06, Smi09]. A major open question has been to determine whether any dou-
bling metric admits a (1 + \epsilon )-spanner with sublogarithmic lightness. A breakthrough
paper of Gottlieb [Got15] answered this fundamental question in the affirmative by
devising such a spanner construction with constant lightness. Again, this result is
not due to a refined analysis of the greedy spanner. Instead, Gottlieb devised a dif-
ferent construction, which is far more complex, and bounded the lightness of his own
construction. The following question was left open.

Question 2. Is the lightness analysis of [Smi09] for the greedy spanner optimal,
or can one refine it to derive a stronger bound? In particular, is the spanner of
[Got15] lighter than the greedy spanner?

The relatively high runtime of the greedy spanner is a drawback. The state-of-
the-art implementation of the greedy spanner in both Euclidean and doubling metrics
requires time O(n2 log n) [BCF+10] (although there are some heuristics that might be
useful in practice [ABtBB15, ABtBB17]). Building on [DHN93], Das and Narasimhan
[DN97] devised a much faster algorithm that follows the greedy approach. The run-
time of their ``approximate-greedy"" algorithm is O(n log2 n), yet its degree and light-
ness are both bounded by constants (as with the greedy spanner). Gudmundsson,
Levcopoulos, and Narasimhan [GLN02] improved the result of [DN97], implementing
the approximate-greedy algorithm within time O(n log n). For doubling metrics, how-
ever, the only spanner construction with sublogarithmic lightness is that of [Got15];
the runtime of Gottlieb's construction is O(n log2 n) rather than O(n log n), and the
size and degree of his construction are unbounded. Hence, there is a big gap in this
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432 ARNOLD FILTSER AND SHAY SOLOMON

context between Euclidean and doubling metrics, leading to the following question.

Question 3. Can one compute (1 + \epsilon )-spanners with constant lightness in dou-
bling metrics within time O(n log n)? Furthermore, can one extend the state-of-the-art
Euclidean result of [GLN02] to arbitrary doubling metrics?

There have been numerous experimental studies on Euclidean spanners. (See
[FG05, Far08], and the references therein.) The conclusion emerging from these exper-
iments is that the greedy Euclidean spanner outperforms the other popular Euclidean
spanner constructions, with respect to the size and lightness bounds. (Specifically,
the greedy spanner was found to be 10 times sparser and 30 times lighter than any
other examined spanner.) It is reasonable to assume that a similar situation occurs
in arbitrary doubling metrics.

1.3. Our contribution. In this work we fill in the theoretical gap by making
three important observations.

1. Our first observation is surprisingly simple: The greedy spanner is existen-
tially optimal with respect to both the size and the lightness for any graph
family that is closed under edge removal.

Applying this observation to the family of general weighted graphs, we con-
clude that the greedy spanner is just as light as the spanner of [CW18], thus
answering Question 1.

Moreover, it is known that the greedy spanner can be easily implemented
within time O(m(n1+1/k +n log n)) (cf. [ES16]) and thus is much faster than
the complex algorithm of [CW18]. (Although the runtime of the algorithm
of [CW18] is not analyzed explicitly therein, a naive implementation of that
algorithm, which involves diameter computations of carefully selected sub-
graphs, incurs a runtime of \Omega (m2n).) We remark that all faster spanner con-
structions (e.g., [BS07, ES16, MPVX15, EN17, ADF+19]) achieve a worse
lightness bound than that of the greedy spanner. Consequently, the greedy
algorithm enjoys the fastest known runtime of any (2k  - 1)(1 + \epsilon )-spanner
with O(n1+1/k) edges and lightness O(n1/k(1/\epsilon )3+2/k) or, in other words, it
is the fastest algorithm for constructing spanners that are near-optimal with
respect to all of the involved parameters (stretch, size, and lightness).

2. The first observation does not hold for doubling metrics. Our second obser-
vation is that the greedy spanner is existentially near -optimal with respect to
both the size and the lightness for the family of doubling metrics. In partic-
ular, it is just as light as the spanner of [Got15], thus answering Question 2.

3. Our third observation concerns the optimality of the approximate-greedy al-
gorithm of [DN97, GLN02] in doubling metrics and is more intricate than
the first two observations. Informally, it states that the approximate-greedy
spanner with stretch parameter t is existentially near-optimal with respect
to the lightness, for the family of doubling metrics, but when compared to
spanners with a slightly smaller stretch parameter t\prime < t. This enables us to
conclude that the lightness of the approximate-greedy spanner is close to that
of [Got15]. In this way we manage to extend the state-of-the-art Euclidean
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result of [GLN02] to arbitrary doubling metrics, thus answering Question 3.2

While our approximate-greedy spanner achieves the same lightness bound
as that of Gottlieb's spanner [Got15], it has several important advantages
over Gottlieb's. First, our algorithm is conceptually much simpler than that
of [Got15]. Second, our spanner construction has constant degree (ignoring
dependencies on \epsilon and on the doubling dimension), while the degree in [Got15]
is not analyzed, and naively it may be as large as \Omega (n). Third, the degree
bound of our spanner implies that it has O(n) edges, while the size in [Got15]
is not analyzed, and it may be significantly larger than the size of our spanner.
Finally, the construction time of [Got15] is O(n log2 n), while our construction
time is O(n log n), which is considered the holy grail in the area of Euclidean
and doubling spanners.

Our third observation concerning existential near-optimality of approximate-
greedy spanner algorithms can be viewed as a general paradigm for obtaining
fast spanner constructions that are both sparse and light. Although in this
paper we apply this paradigm only to the family of doubling metrics, it can
be applied to other families of graphs, including general graphs, by adjusting
it appropriately. In fact, the very recent work of Alstrup et al. [ADF+19]
follows this paradigm to obtain, for general graphs, either a (2k  - 1)(1 + \epsilon )-
spanner with O(n1+1/k \cdot poly(1\epsilon )) edges and O(n1/k \cdot poly( 1\epsilon )) lightness in

O(n2+\zeta +1/k) time or an O(k)-spanner with the same size and lightness bounds
in O(n1+\zeta +1/k) time, where \zeta > 0 is a small constant.

In summary, by introducing and studying a new notion of optimality, existential
(near-)optimality, this paper provides an extremely simple yet powerful tool in the
area of spanners. We believe that the notion of existential optimality, defined for-
mally below, is of fundamental importance, and we anticipate that it will find more
applications, even outside the area of spanners.

Some definitions concerning existential optimality. Although the mean-
ing of existential optimality can be understood from the context, it is instructive to
provide a formal definition. Fix an arbitrary stretch parameter t \geq 1 and some graph
family \scrG . For a graph G \in \scrG , let OPT sparse

t (G) (respectively, OPT light
t (G)) denote

the optimal size (resp., lightness) of any t-spanner for G, and let OPT sparse
t (\scrG ) =

max\{ OPT sparse
t (G) | G \in \scrG \} (resp., OPT light

t (\scrG ) = max\{ OPT light
t (G) | G \in \scrG \} )

denote the maximum value OPT sparse
t (G) (resp., OPT light

t (G)) over all graphs G in
\scrG . The greedy t-spanner is said to be existentially optimal with respect to the size
(respectively, lightness) if for any graph G \in \scrG , the size (resp., lightness) of the greedy
t-spanner for G does not exceed OPT sparse

t (\scrG ) (resp., OPT light
t (\scrG )). This does not

mean that the size (resp., lightness) of the greedy t-spanner for any graph G \in \scrG is

bounded by OPT sparse
t (G) (resp., OPT light

t (G)). It simply means that there exists
a graph G\prime \in \scrG , such that the size (resp., lightness) of the greedy t-spanner for G is

bounded by OPT sparse
t (G\prime ) (resp., OPT light

t (G\prime )). In other words, the maximum size
(resp., lightness) of the greedy t-spanner over all graphs in \scrG is equal to the maximum
size (resp., lightness) of an optimal t-spanner over all graphs in \scrG .

2The O(n logn) runtime bound of [GLN02] holds in the traditional algebraic computation-tree
model with the added power of indirect addressing. Our result applies with respect to the same
computation model.
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434 ARNOLD FILTSER AND SHAY SOLOMON

Fig. 1. The graph H in the figure is the Petersen graph on 10 vertices, with girth 5 and 15
edges. All edges of H have weight 1 and are colored black. The red dashed edges are the edges of
the star S of weight 1 + \epsilon . The graph G is obtained as the union of the black and red edges in the
figure. The greedy 3-spanner for G includes all 15 edges of H, whereas the optimal 3-spanner for
G consists of the 9 edges of S. (See online version for color.)

For example, let \scrG be the family of general weighted graphs on n vertices, and let
H be an n-vertex dense graph of high girth, namely, with girth t + 2 and n1+\Theta (1/t)

edges, where all edge weights are 1. Also, let S be a star on the same vertex set as H
rooted at an arbitrary vertex, so that all edges of S that belong toH have weight 1 and
all edges of S that do not belong to H have weight 1 + \epsilon . Finally, let G be the graph
containing all edges of H and all edges of S with weight 1 + \epsilon . Note that the greedy
t-spanner for G includes all n1+\Theta (1/t) edges of the high girth graph H, whereas the
optimal t-spanner (assuming t \geq 2+ 2\epsilon ) consists of the edges of the star S and hence
is much sparser and lighter. (See Figure 1 for an illustration.) This example, however,
does not contradict the existential optimality of the greedy spanner: Although the
size (resp., lightness) of the greedy t-spanner for G exceeds OPT sparse

t (G) (resp.,

OPT light
t (G)), it can be shown that it is equal to OPT sparse

t (H) (resp., OPT light
t (H)),

which, in turn, is bounded by OPT sparse
t (\scrG ) (resp., OPT light

t (\scrG )).
The meaning of existential near-optimality is similar, except that we are allowed

to have some slack, which may depend on the stretch parameter t as well as on
parameters of the graph family of interest \scrG . As mentioned, in our third observation
we compare the lightness of the greedy spanner with a certain stretch parameter t to
the optimal lightness of any spanner but with a slightly smaller stretch parameter t\prime .
This is just one example of how the slack parameter can be used. Another example
is to compare the greedy spanner in some graph family \scrG to an optimal spanner
but with respect to a different (closely related) graph family \scrF \prime . In particular, in
our second and third observations we compare the lightness of the greedy spanner in
metric spaces of bounded doubling dimension to the optimal lightness of any spanner
but with respect to metric spaces of slightly larger doubling dimension. It would be
interesting to study additional ways of using the slack parameter, as they may lead
to new results in this area.

We remark that light spanners were extensively studied in various graph families,
such as planar graphs [ADD+93, Kle05], apex graphs [GS02], bounded pathwidth
graphs [GH12], bounded genus graphs [Gri00, GS02, DHM10], bounded treewidth
graphs [DHM10], and graphs excluding fixed minors [Gri00, DHM10, BLW17]. Since
all of these graph families are closed under edge removal, our first observation implies
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that the greedy spanner for them is just as good as any other spanner.

1.4. Subsequent work. The preliminary version of this paper appeared in
PODC 2016 [FS16], and it triggered further work in the area. We focus here on
the two most relevant follow-up papers [BLW19, LS19].

Borradaile, Le, and Wulff-Nilsen [BLW19], improving over [Got15], presented a
construction of (1 + \epsilon )-spanners for doubling metrics with lightness (1/\epsilon )O(ddim); the
improvement is in the dependence of the lightness bound on \epsilon and ddim (see section
2.1 for the details). Moreover, by building on our Theorem 7, [BLW19] achieved an
O(n log n)-time algorithm for constructing (1+\epsilon )-spanners with lightness (1/\epsilon )O(ddim).

Le and the second author [LS19] studied the greedy spanner in d-dimensional
Euclidean metrics and determined the following exact asymptotic dependencies on \epsilon 
and d for both the size and lightness bounds for any d = O(1) (disregarding polylog-
arithmic factors of 1/\epsilon ): \Theta (n(1/\epsilon )d - 1) edges and lightness \Theta ((1/\epsilon )d). Moreover, Le
and Solomon [LS19] showed that Steiner points lead to a quadratic improvement in
the size of Euclidean spanners.

1.5. Organization. In section 2 we present the notation that is used throughout
the paper, and we summarize some statements from previous work that are most
relevant to ours. In section 3 we show that the greedy spanner is existentially optimal
for graph families that are closed under edge removal. The basic optimality argument
of section 3 is extended to doubling metrics in section 4. Finally, in section 5 we show
that the approximate-greedy spanner in doubling metrics is light.

2. Preliminaries. All of the graphs considered in this paper are connected and
undirected and have positive edge weights. Let G = (V,E,w) be such a graph.
The weight w(P ) of a path P is the sum of all edge weights in it, i.e., w(P ) =\sum 

e\in P w(e). For a pair of vertices u, v \in V , let \delta G(u, v) denote the distance between
u and v in G, i.e., the weight of a shortest path between them. We denote by
MG = (V, \delta G) the (shortest path) metric space induced by G; we will view MG as a
complete weighted graph (V,

\bigl( 
V
2

\bigr) 
, w) over the vertex set V , where the weight w(u, v)

of an edge (u, v) is given by the graph distance \delta G(u, v) between its endpoints. A
subgraph H = (V,E\prime , w) of G (where E\prime \subseteq E) is called a t-spanner for G if for
all u, v \in V , \delta H(u, v) \leq t \cdot \delta G(u, v). The parameter t is called the stretch of the
spanner H. If \delta H(u, v) \leq t \cdot \delta G(u, v) for all edges (u, v) \in E, then it also holds that
\delta H(u, v) \leq t \cdot \delta G(u, v) for all pairs of vertices u, v \in V . Therefore, to bound the stretch
of the spanner, one may restrict attention to the edges of the graph. Let | H| = | E\prime | 
denote the size of H, and let w(H) = w(E\prime ) =

\sum 
e\in E\prime w(e) denote its weight. The

lightness \Psi (H) of H is the ratio between the weight of H and the weight of an MST

for G, i.e., \Psi (H) = w(H)
w(MST (G)) . (Throughout the paper all logarithms are in base 2.)

We refer the reader to section 1.3 for some definitions concerning the notion of
existential optimality.

The result of Chechik and Wulff-Nilsen [CW18] is summarized in the following
theorem.

Theorem 1 (see [CW18]). For every weighted n-vertex graph G = (V,E,w)
and parameters k \geq 1 and 0 < \epsilon < 1, there exists a (2k  - 1) \cdot (1 + \epsilon )-spanner with
O(n1+1/k) edges and lightness O(n1/k(1/\epsilon )3+2/k). Such a spanner can be constructed
in polynomial time.

2.1. Doubling metrics. Most of the statements in this section will be used in
our construction and analysis of spanners for doubling metrics.
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436 ARNOLD FILTSER AND SHAY SOLOMON

We start with the standard packing property in doubling metrics (see, e.g.,
[GKL03]).

Lemma 1. Let (M, \delta ) be a metric space with doubling dimension ddim. If S \subseteq M
is a subset of points with minimum interpoint distance r that is contained in a ball of

radius R, then | S| \leq 
\bigl( 
2R
r

\bigr) O(ddim)
.

The following theorem states that any doubling metric admits a constant degree
(1 + \epsilon )-spanner. This theorem will be useful in answering Question 3 and, more
specifically, for achieving the degree bound required for extending the state-of-the-art
Euclidean result of [GLN02] to arbitrary doubling metrics (see Theorem 7).

Theorem 2 (see [CGMZ16, GR08a]). For any n-point metric space (M, \delta ) with
doubling dimension ddim and parameter 0 < \epsilon < 1/2, there exists a (1 + \epsilon )-spanner
with degree (1/\epsilon )O(ddim). The runtime of this construction is (1/\epsilon )O(ddim)(n log n).

The result of Smid [Smi09] is summarized in the following theorem. We provide
this theorem only for the sake of comparison with our new result (see Corollary 3),
which improves the logarithmic lightness bound provided by this theorem to constant.

Theorem 3 (see [Smi09]). For any n-point metric space (M, \delta ) with doubling
dimension ddim and any parameter 0 < \epsilon < 1

2 , the greedy (1 + \epsilon )-spanner has

(1/\epsilon )O(ddim)n edges and lightness (1/\epsilon )O(ddim) log n.

The result of Gottlieb [Got15] is summarized in the following theorem. We will
use this theorem for answering Questions 2 and 3.

Theorem 4 (see [Got15]). For any n-point metric space (M, \delta ) with doubling di-
mension ddim and parameter 0 < \epsilon < 1/2, there exists a (1+\epsilon )-spanner with lightness
(ddim/\epsilon )O(ddim). The runtime of this construction is (ddim/\epsilon )O(ddim)(n log2 n).

Remark. Recently, Borradaile, Le, and Wulff-Nilsen [BLW19] showed that the
greedy (1 + \epsilon )-spanner has lightness (1/\epsilon )O(ddim) in doubling metrics, improving over
the lightness bound provided by Theorem 4.

ALGORITHM 1: Greedy(G = (V,E,w), t).

1: H = (V, \emptyset , w).
2: for each edge (u, v) \in E, in nondecreasing order of weight, do
3: if \delta H(u, v) > t \cdot w(u, v) then
4: Add the edge (u, v) to E(H).
5: end if
6: end for

2.2. The greedy spanner and its basic properties. The greedy spanner
algorithm is presented in Algorithm 1. Let H = (V,EH , w) be the output of an
arbitrary execution of the greedy algorithm with stretch parameter t. It is immediate
that H has stretch at most t. If the edge weights in the graph are distinct, then
H is uniquely defined, but this does not hold in general; nevertheless, by letting
H designate an arbitrary such spanner, we may henceforth refer to it as the greedy
t-spanner. The following observation is immediate (see, e.g., [ENS14, CW18]).

Observation 2. H contains all edges of some MST of G, denoted Z. (Hence Z
is also an MST of H.)
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e′

e

Fig. 2. The path P in H\prime between the endpoints of edge e is depicted by a dashed line. The
path P \cup e \setminus e\prime between the endpoints of edge e\prime , all edges of which have been added to H by the time
the greedy algorithm examines edge e\prime , is colored red. (See online version for color.)

3. The basic optimality proof. In this section we show that the greedy span-
ner is existentially optimal, with respect to both the size and the lightness, for any
graph family that is closed under edge removal.

We start by making the basic observation that the only t-spanner of the greedy
t-spanner is itself.

Lemma 3. Let G = (V,E,w) be any weighted graph, let t \geq 1 be any stretch
parameter, and let H be the greedy t-spanner of G. If H \prime is a t-spanner for H, then
H \prime = H.

Proof. Assume for contradiction that H \prime is a t-spanner for H yet there is an edge
e \in H \setminus H \prime . Let P be a shortest path in H \prime between the endpoints of e. As H \prime is a
t-spanner of H, it holds that w(P ) \leq t \cdot w(e). Consider the last edge examined by
the greedy algorithm among the edges of P and e, denoted e\prime . By the description of
the greedy algorithm, we have w(e) \leq w(e\prime ). Consequently, by the time the greedy
algorithm examines edge e\prime , all of the edges of the path (P \cup e) \setminus e\prime must have already
been added to the greedy spanner. (See Figure 2 for an illustration.) This path
connects the endpoints of e\prime , and its weight is given by

w(P ) - w(e\prime ) + w(e) \leq w(P ) \leq t \cdot w(e) \leq t \cdot w(e\prime ).

Hence the greedy algorithm will not add edge e\prime to H, which is a contradiction.

Equipped with Lemma 3, we now turn to the basic optimality proof.

Theorem 5 (greedy is existentially optimal). Let \scrG be any family of n-vertex
graphs that is closed under edge removal, and let t = t(n) \geq 1 be any stretch parameter.
For every graph G \in \scrG , the greedy t-spanner H of G has at most OPT sparse

t (\scrG )
edges and lightness at most OPT light

t (\scrG ). In other words, the greedy t-spanner is
existentially optimal for \scrG with respect to both the size and the lightness.

Proof. Consider an arbitrary graph G in \scrG , and let H be the greedy t-spanner
of G. Since \scrG is closed under edge removal and H is a subgraph of G, H be-
longs to \scrG . Hence, there exist t-spanners \scrH sparse and \scrH light of H with at most
OPT sparse

t (\scrG ) edges and lightness at most OPT light
t (\scrG ), respectively. Lemma 3 im-

plies that\scrH sparse = \scrH light = H, from which the size bound onH immediately follows.
The lightness bound is slightly trickier, as the spanner \scrH light is computed on top of
the greedy spanner H rather than the original graph G. Nevertheless, Observation 2
implies that G and H have the same MST Z. Since the lightness of \scrH light is at most
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438 ARNOLD FILTSER AND SHAY SOLOMON

OPT light
t (\scrG ) and Z is an MST for H, it follows that

OPT light
t (\scrG ) \geq \Psi (\scrH light) =

w(\scrH light)

w(MST (H))
=

w(\scrH light)

w(Z)
.

Using the fact that \scrH light = H, we conclude that the lightness of H satisfies

\Psi (H) =
w(H)

w(MST (G))
=

w(H)

w(Z)
=

w(\scrH light)

w(Z)
\leq OPT light

t (\scrG ).

As the family of weighted graphs is closed under edge removal, we can apply
Theorem 5 on it. Hence the greedy spanner for general graphs has size and lightness
at least as good as those in Theorem 1.

Corollary 1. For every weighted graph G = (V,E,w) on n vertices and m
edges and parameters k \geq 1 and 0 < \epsilon < 1, the greedy (2k  - 1) \cdot (1 + \epsilon )-spanner has
O(n1+1/k) edges and O(n1/k(1/\epsilon )3+2/k) lightness. (A naive implementation of the
greedy algorithm requires O(mn1+1/k) time.)

In [BFN19] it was proved that for any parameter 0 < \delta < 1 and any stretch
parameter t = t(n), if every n-vertex weighted graph admits a t-spanner with at most
m(n, t) edges and lightness at most l(n, t), then for every such graph there also exists
a t/\delta -spanner with at most m(n, t) edges and lightness at most 1+\delta \cdot l(n, t). Applying
Theorem 5 again, we derive the following result.

Corollary 2. For every weighted n-vertex graph G = (V,E,w) and parameter
0 < \delta < 1, the greedy O(log n/\delta )-spanner has O(n) edges and lightness at most 1+ \delta .

As mentioned in the introduction, a plethora of graph families that are closed un-
der edge removal were studied extensively in the spanner literature. This includes the
families of planar graphs, bounded genus graphs, bounded treewidth graphs, graphs
excluding fixed minors, and more. For all of these graph families, Theorem 5 shows
that the greedy spanner is existentially optimal.

4. The optimality argument in doubling metrics. The basic optimality
argument of section 3 applies to graph families that are closed under edge removal.
Note that metric spaces do not fall into this category. Nevertheless, for metric spaces,
the basic optimality argument suffices: On the one hand, the upper bound for general
weighted graphs applies to any metric space, and on the other hand, the lower bound
due to high girth graphs naturally applies to the induced metric spaces (see, e.g.,
[ADD+93, RR98]).

In this section we study the optimality of the greedy spanner for doubling metrics.
For such metric spaces, one would like to obtain spanners with stretch 1 + \epsilon , where \epsilon 
is arbitrarily close to 0. We will show that the greedy (1 + \epsilon )-spanner is existentially
near-optimal in doubling metrics with respect to both the size and the lightness.
The next observation and subsequent lemma will be used for proving the lightness
optimality.

Observation 4. Consider the metric space MG induced by an arbitrary weighted
graph G = (V,E,w). Then any MST of MG is a spanning tree of G. (Hence there is
a common MST for G and MG, denoted Z.)

Proof. Consider an MST Z for MG and suppose for contradiction that Z contains
an edge e outside G. Since e belongs to MG \setminus G, any path in G between the endpoints
of e consists of at least two edges. Consider the (multi)graph obtained from Z by
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replacing edge e with a shortest path in G between the endpoints of e. It is a spanning
subgraph ofMG of weight w(Z), which contains at least n+1 edges (some of which may
be multiple edges) and thus at least one cycle. By breaking cycles in this subgraph,
we obtain a spanning tree of MG of weight strictly smaller than w(Z), yielding a
contradiction to the weight minimality of Z.

Lemma 5. Let (M, \delta ) be any metric space, let t \geq 1 be some stretch parameter,
and let H be the greedy t-spanner of M . For every t-spanner H \prime of the metric space
MH induced by H, we have w(H) \leq w(H \prime ).

Proof. Let H \prime be a t-spanner of MH and define H \prime \prime as the subgraph of H ob-
tained from H \prime by replacing each edge e of H \prime with a shortest path in H between
the endpoints of e. Clearly, the distances in H \prime \prime are no greater than the respective
distances in H \prime . Since H \prime \prime is a subgraph of H, it follows that H \prime \prime is a t-spanner for
H. Lemma 3 implies that H \prime \prime = H. Finally, noting that w(H \prime \prime ) \leq w(H \prime ), we have
w(H) = w(H \prime \prime ) \leq w(H \prime ).

The following lemma will be used for proving the size optimality.

Lemma 6. Let (M, \delta ) be any metric space, let t < 2 be some stretch parameter,
and let H be the greedy t-spanner of M . For every t-spanner H \prime of the metric space
MH induced by H, we have | H| \leq | H \prime | .

Proof. Denote by wH the weight function of H; i.e., for any edge (u, v) \in H,
wH(u, v) = \delta (u, v), and for any path P \in H, wH(P ) =

\sum 
e\in P wH(e). Similarly, denote

by wH\prime the weight function of H \prime ; i.e., for any (u, v) \in H \prime , wH\prime (u, v) = \delta MH
(u, v),

and for any path P \in H, wH\prime (P ) =
\sum 

e\in P wH\prime (e). For every edge e\prime \in H \prime , let Pe\prime be
a shortest path between the endpoints of e\prime in H; by definition, we have wH\prime (e\prime ) =
wH(Pe\prime ). We say that edge e\prime \in H \prime covers all edges of Pe\prime , and symmetrically, all
edges of Pe\prime are covered by e\prime . (An edge e\prime \in H \cap H \prime covers itself.)

For each edge e in H \setminus H \prime , let \scrQ e be a shortest path between the endpoints of e
in H \prime . Since H \prime is a t-spanner for MH , we have wH\prime (\scrQ e) \leq t \cdot wH(e). Observe that
the edges in \cup e\prime \in \scrQ e

Pe\prime form a path \Pi e in H between the endpoints of e. (It will be
shown next that the path \Pi e is not simple.) We have

wH(\Pi e) \leq 
\sum 

e\prime \in \scrQ e

wH(Pe\prime ) =
\sum 

e\prime \in \scrQ e

wH\prime (e\prime ) = wH\prime (\scrQ e) \leq t \cdot wH(e) .

Next, we argue that the edge e must belong to \Pi e. Indeed, otherwise the edges
of \Pi e contain a simple path in H between the endpoints of e of weight bounded by
t \cdot wH(e), implying that the heaviest edge among the edges of this path and e would
not be added to the greedy t-spanner H. Consequently, at least one edge e\prime in \scrQ e

must cover e.
We define an injection f : H \rightarrow H \prime as follows. For each edge e \in H \cap H \prime , f(e)

is defined as e; in this case, edge e = f(e) covers itself. For each e \in H \setminus H \prime , f(e)
is defined to be an arbitrary edge of \scrQ e that covers e. To see that f is injective,
assume for contradiction the existence of two distinct edges e1 and e2 in H and an
edge e\prime \in H \prime such that f(e1) = f(e2) = e\prime \in H \prime . It must hold that e1 and e2 are in
H \setminus H \prime . Assume without loss of generality that w(e1) \leq w(e2). Since both e1 and e2
are covered by e\prime , it follows that wH\prime (e\prime ) \geq wH(e1) + wH(e2) \geq 2 \cdot wH(e1). On the
other hand, by the definition of f , the shortest path \scrQ e1 in H \prime between the endpoints
of e1 contains the edge e\prime = f(e1). Hence the weight of a shortest path in H \prime between
the endpoints of e1 is given by wH\prime (\scrQ e1) \geq wH\prime (e\prime ) \geq 2 \cdot wH(e1) > t \cdot wH(e1), which
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440 ARNOLD FILTSER AND SHAY SOLOMON

contradicts the fact that H \prime is a t-spanner for H. It follows that f is injective, from
which we conclude that | H| \leq | H \prime | .

Let \scrM (n, ddim) denote the family of n-point metric spaces with doubling dimen-
sion bounded by ddim for any n and ddim. The following observation shows that a
small ``stretching"" of any metric space does not change the doubling dimension of the
metric space by much.

Observation 7. Let H be a t-spanner of an arbitrary metric space M\in \scrM (n,ddim)
for t \leq 2. Then the metric space MH induced by H belongs to \scrM (n, 2ddim).

Proof. Clearly, any ball of radius r in the ``stretched"" metric space MH is con-
tained in the respective ball of the original metric space M . By definition, this ball
can be covered by 22ddim balls of radius r

4 in M and thus by 22ddim balls of radius
t \cdot r

4 \leq r
2 in the stretched metric space MH .

The existential near-optimality result for doubling metrics is summarized in the
following theorem.

Theorem 6 (greedy is near-optimal in doubling metrics). For every metric
M \in \scrM (n, ddim) and any stretch parameter t < 2, the greedy t-spanner H of M has at

most OPT sparse
t (\scrM (n, 2ddim)) edges and lightness at most OPT light

t (\scrM (n, 2ddim)).

Proof. Let M be an arbitrary metric space in \scrM (n,ddim), let H = (V,E) be
the greedy t-spanner for M , and let MH be the metric space induced by H. By
Observation 7, MH \in \scrM (n, 2ddim). Hence, there exist t-spanners \scrH sparse and
\scrH light for MH with at most OPT sparse

t (\scrM (n, 2ddim)) edges and lightness at most

OPT light
t (\scrM (n, 2ddim)), respectively. Lemma 6 implies that | H| \leq | \scrH sparse| , from

which the size bound on H immediately follows. As for the lightness bound on H,
note that \scrH light is computed on top of MH rather than on the original metric space
M . Nevertheless, Observation 2 and Observation 4 imply that M and MH have the
same MST Z. Since the lightness of \scrH light is at most OPT light

t (\scrM (n, 2ddim)), it
follows that

OPT light
t (\scrM (n, 2ddim)) \geq \Psi (\scrH light) =

w(\scrH light)

w(MST (MH))
=

w(\scrH light)

w(Z)
;

hence w(\scrH light) \leq OPT light
t (\scrM (n, 2ddim)) \cdot w(Z). By Lemma 5, we have w(H) \leq 

w(\scrH light); hence the lightness of H satisfies

\Psi (H) =
w(H)

w(MST (M))
=

w(H)

w(Z)
\leq w(\scrH light)

w(Z)
\leq OPT light

t (\scrM (n, 2ddim)) .

By Theorem 3, the greedy (1 + \epsilon )-spanner for n-point doubling metrics has O(n)
edges and lightness O(log n), where the O-notation hides a multiplicative term of
(1/\epsilon )O(ddim). Applying Theorem 6 in conjunction with Theorem 4, we reduce the
lightness bound of the greedy (1 + \epsilon )-spanner to constant.

Corollary 3. For every metric space (M, \delta ) in \scrM (n, ddim) and any param-
eter 0 < \epsilon < 1

2 , the greedy (1 + \epsilon )-spanner has n(1/\epsilon )O(ddim) edges and lightness

(ddim/\epsilon )O(ddim).

Remark. Corollary 3 shows that the greedy (1 + \epsilon )-spanner in doubling metrics
achieves optimal bounds on the size and the lightness, disregarding dependencies on \epsilon 
and the doubling dimension. However, improving these dependencies is a fundamental
challenge of practical importance. By Theorem 6, any improvement whatsoever in
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the dependencies on \epsilon and the doubling dimension on either the size or the lightness
of any spanner construction for doubling metrics would trigger a similar improvement
to the greedy spanner. Note that the recent result of [BLW19] shows that the greedy
(1 + \epsilon )-spanner has lightness (1/\epsilon )O(ddim).

5. The approximate-greedy spanner in doubling metrics is light. Corol-
lary 3 shows that the greedy (1+\epsilon )-spanner in doubling metrics achieves near-optimal
bounds on the size and the lightness. Nevertheless, this spanner has two major dis-
advantages. First, as mentioned in the introduction, there exist metric spaces with
doubling dimension 1 for which its degree may be unbounded. (This is in contrast
to d-dimensional Euclidean metrics, where the greedy (1 + \epsilon )-spanner has degree
(1/\epsilon )O(d).) Second, it cannot be constructed within subquadratic time in doubling
metrics due to a lower bound of [HM06]. In fact, even in d-dimensional Euclidean
metrics, the state-of-the-art implementation of the greedy (1 + \epsilon )-spanner requires
time (1/\epsilon )O(d)(n2 log n) [BCF+10].

Building on [DHN93, DN97], Gudmundsson, Levcopoulos, and Narasimhan
[GLN02] devised a much faster algorithm that follows the greedy approach, hereafter
Algorithm Approximate-Greedy. The runtime of this algorithm is (1/\epsilon )O(d)(n log n),
yet the degree and lightness of the approximate-greedy spanner produced by the algo-
rithm are both bounded by (1/\epsilon )O(d), just as with the greedy spanner for Euclidean
metrics. The runtime analysis of Algorithm Approximate-Greedy [GLN02] does not
exploit any properties of Euclidean geometry. Specifically, it relies on the triangle in-
equality, which applies to arbitrary metric spaces, and on standard packing arguments
(cf. Lemma 1), which apply to arbitrary doubling metrics. Therefore, the runtime of
Algorithm Approximate-Greedy remains (1/\epsilon )O(d)(n log n) in arbitrary doubling met-
rics. Moreover, the degree bound of (1/\epsilon )O(d) applies to arbitrary doubling metrics
as well. (We refer the reader to Chapter 15 in [NS07] for an excellent description of
this algorithm and its analysis.)

In this section we show that the approximate-greedy spanner of [GLN02]
has constant lightness in arbitrary doubling metrics. Consequently, Algorithm
Approximate-Greedy provides an O(n log n)-time construction of (1 + \epsilon )-spanners
in doubling metrics with lightness and degree both bounded by constants.

5.1. A rough sketch of Algorithm Approximate-Greedy. In this section we
provide a very rough sketch of Algorithm Approximate-Greedy, aiming to highlight
the high-level ideas behind it. This outline is not required for the analysis that is
given in section 5.2; it is provided here for clarity and completeness.

In metric spaces, the greedy algorithm sorts the
\bigl( 
n
2

\bigr) 
interpoint distances and

examines the edges by nondecreasing order of weight. For each edge that is examined
for inclusion in the spanner, the distance between its endpoints in the current spanner
is computed. This is expensive for two reasons: (1) The number of examined interpoint
distances is quadratic in n. (2) Computing the exact spanner distance between two
points is costly.

Suppose we aim for a stretch of t = 1+ \epsilon , and let t\prime be an appropriate parameter
satisfying t\prime = 1+O(\epsilon ) < t. (Refer to [GLN02, NS07] for the exact constant hiding in
the O-notation of O(\epsilon ).) Instead of examining all

\bigl( 
n
2

\bigr) 
interpoint distances, Algorithm

Approximate-Greedy computes a bounded degree
\sqrt{} 
t/t\prime -spanner G\prime = (M,E\prime , \delta )

for the input metric space (M, \delta ) and simulates the greedy algorithm with stretch
parameter

\surd 
t \cdot t\prime only on the edges of G\prime . The output of the algorithm is a

\surd 
t \cdot t\prime -

spanner G = (M,E, \delta ) for G\prime , which is a t-spanner for the original metric space
(M, \delta ) by the ``transitivity"" of spanners. A spanner G\prime of degree (1/\epsilon )O(ddim) can be
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constructed in (1/\epsilon )O(ddim)(n log n) time via Theorem 2. Since the output t-spanner
G for (M, \delta ) is a subgraph of G\prime , its degree will be at most (1/\epsilon )O(ddim).

The greedy simulation is applied only on the edges of G\prime that are sufficiently
``heavy."" Formally, let D denote the maximum weight of any edge of the bounded
degree spanner G\prime , and let E0 be the set of light edges in E\prime , namely, of weight at
most D/n. As | E0| \leq | E\prime | = O(n), we have w(E0) = O(D) = O(MST (M)). All light
edges are taken to the output spanner G, and the greedy simulation is applied only
on the edges of E\prime \setminus E0. (So the output spanner G will contain all edges of E0 and
some edges of E\prime \setminus E0.)

As mentioned, computing the exact distance between two points is costly; using
Dijkstra's algorithm, it requires O(n log n) time (see, e.g., section 2.5 and Corollary
2.5.10 in [NS07]). Since G\prime has O(n) edges, the overall runtime will be O(n2 log n). To
speed up the computation time, Algorithm Approximate-Greedy does not compute
the exact distance between two points but rather an approximation of that distance.
This is achieved by maintaining a much simpler and coarser cluster graph that ap-
proximates the original distances, on which the distance queries are performed. More
specifically, the algorithm partitions the edge set E\prime \setminus E0 into log\mu n buckets for an
appropriate parameter 1 < \mu = O(log n), such that edge weights within each bucket
differ by at most a factor of \mu . Then it examines the edges of E\prime \setminus E0 by going from
one bucket to the next, examining edges by nondecreasing order of weight. Whenever
all edges of some bucket have been examined, the cluster graph is updated according
to the new edges that were added to the spanner. The idea is to periodically make
the cluster graph simpler and coarser, so that the shortest path computations made
on it will be fast. The bottom line is that one does not simulate the greedy algorithm
(with stretch parameter

\surd 
t \cdot t\prime ) on the edge set E\prime \setminus E0 but rather an approximate

version of it.

5.2. Bounding the lightness of the Approximate-Greedy spanner. As men-
tioned, the runtime of Algorithm Approximate-Greedy is (1/\epsilon )O(ddim)(n log n) in ar-
bitrary doubling metrics. In what follows, let G = (M,E, \delta ) be the t-spanner for
(M, \delta ) returned by Algorithm Approximate-Greedy. Since G is a subgraph of the
bounded degree spanner G\prime = (M,E\prime , \delta ), its degree is (1/\epsilon )O(ddim).

It remains to bound the lightness of G. The lightness argument of [GLN02],
which relies on previous works [DHN93, DN97], is based on rather deep properties
from Euclidean geometry, most notably the leapfrog property. In particular, this
argument does not apply to arbitrary doubling metrics.

Instead, we employ the following lemma, which lies at the heart of the lightness
analysis of [GLN02]. While this lemma applies to arbitrary doubling metrics, the way
it was used in [GLN02] does not extend to arbitrary doubling metrics. Specifically, it
was used in [GLN02] to show that the edge set E \setminus E0 satisfies the leapfrog property.
(Recall that E0 is the set of light edges in G\prime = (M,E\prime , \delta ), all of which are taken to
the approximate-greedy spanner G = (M,E, \delta ).) In Euclidean metrics, it has been
proved [DHN93, NS07] that any edge set satisfying the leapfrog property has constant
lightness, but this proof does not carry over to arbitrary doubling metrics.

Lemma 8 (Lemma 17 in [GLN02]). Let e = (u, v) \in E \setminus E0. The weight of the
second shortest path between u and v in the approximate-greedy spanner G is greater
than t\prime \cdot w(e). (If there are multiple shortest paths between u and v, then the weight
of the second shortest path equals the weight of the shortest path.)

Remark. The parameter t\prime in the statement of this lemma depends on the
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stretch parameters of the spanners G\prime and G that are constructed by Algorithm
Approximate-Greedy. Specifically, recall that the output spanner G is a

\surd 
t \cdot t\prime -

spanner for G\prime , which is, in turn, a
\sqrt{} 
t/t\prime -spanner for the input metric space M .

We will use the following observation due to [Smi07]. We include a proof for
completeness.

Observation 9 (Lemma 1.7 in [Smi07]). Let H be an arbitrary weighted graph,
and let t be any stretch parameter. For any t-spanner H \prime of H, w(MST (H \prime )) \leq 
t \cdot w(MST (H)).

Proof. Consider an MST Z for H. Replace each edge of Z by a t-spanner path
in H \prime between the endpoints of that edge, and then break cycles. The resulting
structure Z \prime is a spanning tree of H \prime , hence w(MST (H \prime )) \leq w(Z \prime ), and we have
w(MST (H \prime )) \leq w(Z \prime ) \leq t \cdot w(Z) = t \cdot w(MST (H)).

The following lemma bounds the lightness of G. Its proof is based on the some-
what surprising observation that the lightness of the t-spanner G produced by Al-
gorithm Approximate-Greedy is existentially near-optimal with respect to stretch
parameter t\prime < t (rather than t). We remark that G is not a greedy spanner but
rather an approximate-greedy spanner, and it is inherently different from the greedy
t-spanner and the greedy t\prime -spanner. In particular, its weight may be larger than the
weights of both these greedy spanners. Nevertheless, our existential near-optimality
argument suffices to derive the required lightness bound.

Lemma 10. The lightness of G is (ddimt\prime  - 1 )
O(ddim).

Proof. Recall that G = (M,E, \delta ) is a t-spanner for M , where t = 1 + \epsilon , \epsilon < 1,
and let MG be the metric space induced by G. By Observation 7, the doubling
dimension of MG is bounded by 2ddim. Let H \prime be a t\prime -spanner of MG with lightness
OPT light

t\prime (\scrM (n, 2ddim)), where t\prime = 1 + O(\epsilon ) < t is the parameter appearing in the
statement of Lemma 8, which is optimized as part of Algorithm Approximate-Greedy.
As in the proof of Lemma 5, we transform H \prime into a t\prime -spanner H \prime \prime of G of weight at
most w(H \prime ). By Observation 4 and Observation 9, the MST weights for all graphs
M,G,MG, H

\prime , and H \prime \prime are the same, up to a factor of t \cdot t\prime = O(1).
We argue that every edge e \in E \setminus E0 belongs to H \prime \prime . Suppose for contradiction

that there is an edge e \in E \setminus E0 that does not belong to H \prime \prime . Let P be a shortest
path between the endpoints of e in H \prime \prime . Since H \prime \prime is a t\prime -spanner of G, we have
w(P ) \leq t\prime \cdot w(e). Note that this path is contained in G. Since e \in G and M is a
metric space, the weight of the second shortest path between the endpoints of e in G
is at most w(P ) \leq t\prime \cdot w(e). On the other hand, By Lemma 8, the weight of this path
is greater than t\prime \cdot w(e), which is a contradiction. It follows that

w(G) = w(E \setminus E0) + w(E0) \leq w(H \prime \prime ) + w(E0)

\leq w(H \prime ) + w(E0) =

\biggl( 
ddim

t\prime  - 1

\biggr) O(ddim)

\cdot w(MST (M)) .

Setting t = 1 + \epsilon and t\prime = 1 + c \cdot \epsilon (for an appropriate constant c, see [GLN02,
NS07]), we conclude with the following.

Theorem 7. For any metric space (M, \delta ) in \scrM (n, ddim) and parameter
0 < \epsilon < 1

2 , Algorithm Approximate-Greedy returns a (1 + \epsilon )-spanner with light-

ness
\bigl( 
ddim

\epsilon 

\bigr) O(ddim)
and degree (1/\epsilon )O(ddim). The runtime of Algorithm Approximate-

Greedy is (1/\epsilon )O(ddim)(n log n).
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Remark. Theorem 7 should be compared to Theorem 4 due to [Got15]. Both
constructions achieve the same lightness bound, but the degree and number of edges
in the spanner construction of [Got15] are unbounded. Moreover, the runtime of the
construction of [Got15] is (ddim/\epsilon )O(ddim)(n log2 n), whereas that of Theorem 7 is
(1/\epsilon )O(ddim)(n log n). By combining the light spanner H1 of [Got15] with a bounded
degree spanner H2, one can obtain a spanner with constant degree and lightness.
Specifically, such a spanner \scrH is obtained by replacing each edge of H1 with a shortest
(or approximately shortest) path in H2 between the endpoints of that edge. The
lightness of the resulting spanner \scrH will not exceed that of H1 by much, whereas
the degree bound will follow from that of H2. There is a major problem with this
approach: The runtime needed for computing spanner \scrH may be very high. Indeed,
although there are efficient ways to estimate the weight of an approximately shortest
path in H2 between two points, we must compute the corresponding path in H2. In
particular, to achieve the degree bound of H2, one may not use edges outside H2.
Moreover, even regardless of this computation time, such a path may contain many
edges that already belong to the gradually growing spanner \scrH . Deciding which edges
of this path should be added to \scrH may be very costly by itself.

By the recent result of [BLW19], the lightness of the spanner construction provided
by Theorem 7 is reduced to (1/\epsilon )O(ddim).

Acknowledgments. We are grateful to Michael Elkin and Ofer Neiman for fruit-
ful discussions. The second author thanks L\'aszl\'o Babai for comments that helped
improving the presentation of the paper.
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